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T -COLORING ON FOLDED HYPERCUBES

Justie Su-Tzu Juan,* I-fan Sun and Pin-Xian Wu

Abstract. Given a graph G = (V, E) and a set T of non-negative integers
containing 0, a T -coloring of G is an integer function f of the vertices of
G such that |f(u) − f(v)| /∈ T whenever uv ∈ E. The edge-span of a T -
coloring f is the maximum value of |f(u) − f(v)| over all edges uv, and the
T -edge-span of a graph G is the minimum value of the edge-span among all
possible T -colorings of G. This paper discusses the T -edge span of the folded
hypercube network of dimension n for the k-multiple-of-s set, T = {0, s, 2s,
. . . , ks} ∪ S, where s and k ≥ 1 and S ⊆ {s + 1, s + 2, . . . , ks− 1}.

1. INTRODUCTION AND BASIC THEOREM

In the channel assignment problem, several transmitters and a forbidden set T

(called T -set) of non-negative integers containing 0, are given. We assign a non-
negative integer channel to each transmitter under a constraint: for two transmitters
where potential interference might occur, the difference of their channels does not
fall within the given T -set. The interference is due to various reasons such as
geographic proximity and meteorological factors. To formulate this problem, we
construct a graph G such that each vertex represents a transmitter, and two vertices
are adjacent if the potential interference of their corresponding transmitters might
occur.

Thus, we have the following definition. Given a T -set and a graph G, a T-
coloring of G is a function f : V (G) → Z+ ∪ {0} such that |f(x) − f(y)| /∈
T if xy ∈ E(G). Note that if T = {0}, then T -coloring is the same as ordinary
vertex-coloring. Hence we may consider the T -coloring problem is a generalized
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graph vertex-coloring problem. T -coloring problem has been studied by several
authors, such as [1, 5, 6, 9, 10, 13] and [15].

Let f be a T -coloring for a graph G. There are three important criteria for
measuring the efficiency of f : First, the order of a T -coloring, which is the number
of different colors used in f ; second, the span of f , which is the maximum of
|f(u)−f(v)| over all vertices u and v; and third, the edge-span of f , which is the
maximum of |f(u) − f(v)| over all edges uv. Given T and G, the T -chromatic

number χT (G) is the minimum order among all possible T -colorings of G, the
T -span spT (G) is the minimum span among all possible T -colorings of G, and the
T -edge-span espT (G) is the minimum edge-span among all possible T -colorings
of G.

In the case of radio frequency assignment, the forbidden T -sets can be very
complex and difficult to model. We focus on a special family T -sets called the k-
multiple-of-s-sets which has the form T = {0, s, 2s, . . . , ks} ∪ S, where s, k ≥ 1
and S ⊆ {s + 1, s + 2, . . . , ks − 1}. The k-multiple-of-s-sets bas been studied by
Raychaudhuri first (see [11, 12]). When s = 1, the set T = {0, 1, 2, . . . , k = r}
is also called an r-initial set. Some practical forbidden sets, such as those that
arise in UHF television problem (see [14]), are very similar to k-multiple-of-s-sets.
We denote Kn as the complete graph (or clique) on n vertices and ω(G) as the
maximum size of a clique in G.

Now, we quote some known results about T -spans and T -edge-spans, some of
which will be used in next section.

Theorem 1.1. ([2]). For all graphs G and sets T,

(1) χT (G) = χ(G).
(2) χ(G)− 1 ≤ espT (G) ≤ spT (G).
(3) spT (Kω(G)) ≤ espT (G) ≤ spT (Kχ(G)).

Theorem 1.2. ([12]). If T is a k-multiple-of-s-set, then spT (G) = spT (Kχ(G)).
Moreover, if χ(G) = st, for some positive integer t, then spT (G) = st+skt−sk−1,
and if χ(G) = st+l, for some l ∈ {1, 2, . . . , s−1}, then spT (G) = st+skt+l−1.

Theorem 1.3. If T is a k-multiple-of-s-set and χ(G) ≤ s, then spT (G) =
espT (G) = χ(G) − 1.

Proof. By Theorem 1.2 and χ(G) ≤ s, we have either t = 1 and χ(G) = s, or
t = 0 and χ(G) = l. Hence, either spT (G) = s + sk− sk− 1 = s− 1 = χ(G)− 1
or spT (G) = l− 1 = χ(G)− 1. And χ(G)− 1 ≤ espT (G) ≤ spT (G) by Theorem
1.1 (2), it implies spT (G) = espT (G) = χ(G)− 1.
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Fig. 1. FH(3).

A folded hypercube network of dimension n analyzed in [3], denoted by
FH(n), is a graph whose vertices are binary sequences p = (p0, p1, . . . , pn−1) with
pi = 0 or 1 for 0 ≤ i ≤ n−1, and two vertices are adjacent if and only if they differ
by exactly one coordinate or by all coordinates. Folded hypercube is basically a
standard hypercube with some extra links established between its nodes. To compare
with hypercube, the hardware overhead of a same dimensional folded hypercube is
almost 1/n, n being the dimensionality of the hypercube, which is negligible for
large n. For this new design, optimal routing algorithms are developed and proven
to be remarkably more efficient than those of the conventional n-cube. There are
many studies on this network (see [4, 7, 16, 17]). In [8], this graph is also called
base-2 generalized orthogonal graph of dimension n. Figure 1 illustrates the
graph FH(3).

2. MAIN RESULT

Theorem 2.1. If G is the folded hypercube network FH(n), then

(1) χ(G) = 2 if n is odd,
(2) 3 ≤ χ(G) ≤ 4 if n is even.
(3) In particular, χ(FH(4)) = 4.

Proof.

(1) If n is odd, it is easy to check that G is bipartite and we have χ(G) = 2.
(2) There is an (n + 1)-cycle on G by definition. For example, 0000-1000-1100-

1110-1111-0000 is a 5-cycle on FH(4). It is an odd cycle as n is even.
Hence, 3 ≤ χ(G). Now we give a proper 4-coloring to prove χ(G) ≤ 4. Let
p = (p0, p1, . . .pn−1) be a vertex on G and consider αp =

∑n−1
i=1 pi (mod 2).
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Color p as 1 if p0 = 0 and αp = 0. Color p as 2 if p0 = 0 and αp = 1.
Color p as 3 if p0 = 1 and αp = 0. Color p as 4 if p0 = 1 and αp = 1. If p
and q are both colored as j, then p0 = q0 and αp = αq. That is, p0 = q0 and
∑n−1

i=0 pi (mod 2) =
∑n−1

i=0 qi (mod 2). Obviously, p and q are not adjacent.
The coloring is a proper 4-coloring and χ(G) ≤ 4.

(3) By Figure 2, FH(4) contains the Grötzsch graph. Then we have χ(FH(4)) =
4.

Theorem 2.2. If G is the folded hypercube network FH(n) with n is odd and
T is a k-multiple-of-s set. Then

(1) espT (G) = spT (G) = k + 1 as s = 1,
(2) espT (G) = spT (G) = 1 as s ≥ 2.

Proof. Since n is odd, we have χ(G) = 2 by Theorem 2.1.

(1) If s = 1, T is a k-initial set. By Theorem 1.1 (3), we have spT (Kω(G)) =
spT (Kχ(G))=spT (K2)=k +1. It’s easy to see espT (G)=spT (G)=k +1.

(2) Because s ≥ 2 = χ(G), it can be obtained by Theorem 1.3.

Fig. 2. There is a Grötzsch subgraph in FH(4).

Theorem 2.3. If G is the folded hypercube network FH(n) with n is even,
χ(G) = 3 and T is a k-multiple-of-s-set, then

(1) k + 1 ≤ espT (G) ≤ spT (G) = 2k + 2 as s = 1,
(2) espT (G) = spT (G) = 2k + 2 as s = 2,
(3) espT (G) = spT (G) = 2 as s ≥ 3.
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Proof. Consider s = 2, that is, {0, 2, 4, . . . , 2k} ⊆ T . Let f be a T -coloring
of G. Obviously, if f(u) and f(v) are both even (or odd), then |f(u) − f(v)| ≥
2k + 2. On an odd cycle, there are two adjacent vertices which are both even
(or odd). It means, espT (G) ≥ 2k + 2 if G is not a bipartite graph. Hence,
espT (FH(n)) ≥ 2k + 2 if s = 2. And spT (FH(n)) = spT (K3) = 2k + 2. We
have 2k + 2 ≤ espT (G) ≤ spT (G) = 2k + 2.

For other cases, it is easy to observe that by using Theorem1.1 (3), 1.2 and1.3.

Theorem 2.4. If G is the folded hypercube network FH(n) with n is even,
χ(G) = 4 and T is a k-multiple-of-s-set, then

(1) k + 1 ≤ espT (G) ≤ spT (G) = 3k + 3 as s = 1,
(2) 2k + 2 ≤ espT (G) ≤ spT (G) = 2k + 3 as s = 2,
(3) 3 ≤ espT (G) ≤ spT (G) = 3k + 3 as s = 3,
(4) espT (G) = spT (G) = 3 as s ≥ 4.

Proof. It is similar to the proof of above theorem, there exists an odd cycle on
G. Therefore, espT (FH(n)) ≥ 2k + 2 as s = 2.

For other cases, it is easy to check that by using Theorems 1.1, 1.2 and 1.3.

Now, consider s = 2, espT (FH(4)) is either 2k + 2 or 2k + 3 by Theorems
2.1 (3) and 2.4 (2). We prove the T -edge-span of the Grötzsch graph which is a
subgraph of FH(4) is at least 2k + 3. This implies that espT (FH(4)) = 2k + 3
when s = 2. Let x be the vertex with degree 5 in the Grötzsch graph (see Figure 2).
Due to the vertex transitivity of FH(n), without loss of generality, we may assume
f(x) = 0 for the vertex x. First, we have the following properties and lemmas for
sets T = {0, 2, 4, ..., 2k} and T -coloring f with T -edge-span 2k + 2, for a graph
G.

Lemma 2.5. If f is a T -coloring with T -edge-span 2k + 2 for a graph G
where T = {0, 2, 4, ..., 2k} and P is a path of length i from x to y on G, then

|f(x)− f(y)| ≤ i(2k + 2).

Proof. The result follows immediately by the property |f(u)− f(v)| ≤ 2k + 2
for all edges uv and the triangle inequality: |a + b| ≤ |a| + |b| for any integers a

and b.

If f is a T -coloring with T -edge-span 2k + 2 for a graph G where T =
{0, 2, 4, ..., 2k} and xy ∈ E(G), then f(x) = f(y) ± (2k + 2) if and only if
f(x) and f(y) are both odd (or even). In fact, the equality of Lemma 2.5 holds
only if the colors of all vertices on P are all odd (or even). Furthermore, if P is
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a path of length i from x to y and the colors of all vertices on P are all odd (or
even), then |f(x)− f(y)| = (i − 2t)(2k + 2) for some integer t with 0 ≤ t ≤ � i

2�.
Therefore, if i is odd, |f(x) − f(y)| is an odd multiple of 2k + 2; if i is even,
|f(x)− f(y)| is an even multiple of 2k + 2.

Lemma 2.6. If G is an odd cycle Cn and f is a T -coloring of G with T -edge-
span 2k + 2 where T = {0, 2, 4, ..., 2k}, then

(1) the colors of vertices are not all even (or odd),
(2) not all n − 1 vertices color odd as one colors 0.

Proof.
(1) Assume x and y are two vertices on Cn and the colors of all vertices to be

all odd (or even). Obviously, there are two (x,y)-paths P and Cn\P with
length i and n− i, respectively. Because n is odd and the above observation,
we obtain that |f(x)− f(y)| is both an odd multiple and an even multiple of
2k + 2. That implies a contradiction.

(2) Assume x is the vertex colored 0 and the colors of other vertices are all odd.
Let a and b be the two neighbors of x, 1 ≤ f(a), f(b) ≤ 2k + 1. There is
a (a,b)-path P of length n − 2 and the colors of the vertices on P are all
odd. Since n − 2 is odd, |f(a) − f(b)| is an odd multiple of 2k + 2. Hence
2k + 2 ≤ |f(a) − f(b)|, a contradiction.

Lemma 2.7. If G is an even cycle Cn and f is a T -coloring of G with T -
edge-span 2k + 2 where T = {0, 2, 4, ..., 2k}, one vertex x colors 0 and all n − 1
vertices color odd, then the two neighbors of x have the same color.

Proof. Let a and b be the two neighbors of x, 1 ≤ f(a), f(b) ≤ 2k + 1. There
is a (a,b)-path P of length n − 2 and the colors of the vertices on P are all odd.
Since n−2 is even and by the above observation, |f(a)−f(b)| is an even multiple
of 2k +2. Hence, we have |f(a)−f(b)| = 0 or |f(a)−f(b)| ≥ 2(2k +2). Hence,
f(a) = f(b).

Property 2.8. If f is a T -coloring with T -edge-span 2k + 2 for a graph G

where T = {0, 2, 4, ..., 2k}.

(1) If there are two edges uv, u′v′ ∈ E(G), such that f(u) = c ,f(v) = d+2k+2,
f(u′) = d, f(v′) = c + 2k + 2, then c = d.

(2) If w is a common neighbor of x and y, 0 < f(x) − f(y) < 4k + 4 and
f(x)− f(y) is even, then both f(x) − f(w) and f(w)− f(y) are odd.

(3) If w is a common neighbor of x and y, and f(x) − f(y) > 0 is odd, then
f(w) is either f(x)− (2k + 2) or f(y) + (2k + 2).
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Proof. It is easy to check these properties.

Theorem 2.9. For a k-multiple-of-2-sets T , espT (FH(4)) = 2k + 3.

Proof. Let T = {0, 2, 4, . . . , 2k}. By Theorem 2.4 (2), 2k+2 ≤ espT (FH(4)) ≤
2k + 3. To prove that the upper bound is the exact value of espT (FH(4)), we as-
sume to the contrary that there exists a T -coloring f for FH(4) with T -edge-span
2k + 2. Since FH(4) is vertex transitive, without loss of generality, let x be the
vertex with f(x) = 0. Let G be a subgraph of FH(4) such that G is isomorphic
to the Grötzsch graph and x is the vertex of G with degree 5. Because there are an
odd cycle on G, f is a T -coloring function of G with edge-span 2k + 2, too. For
any vertex y of G, f(y) ≤ 4k + 4 since d(x, y) ≤ 2 and by Lemma 2.5.

On Figure 2, the vertices vi are on a 5-cycle. We consider the colors f(vi),
1 ≤ i ≤ 5. They are (1) all even (or odd), (2) four even numbers and one odd
number, (3) four odd numbers and one even number, (4) three even numbers and
two odd numbers or (5) three odd numbers and two even numbers. We discuss all
these conditions and verify that they are all impossible.

1. They are all even (or odd).
By Lemma 2.6 (1), it is obviously impossible.

2. They are four even numbers and one odd number.
Without loss of generality, let f(v1) be odd and color the vertices v2, v3, v5

as d, d + (2k + 2), d + (2k + 2), respectively, where 0 ≤ d ≤ 2k + 2 is
even. If both f(u2) and f(u5) are odd, it implies that f(u2) = f(u5) = c

and f(v1) = c + (2k + 2) where 0 ≤ c ≤ 2k + 2 by Lemma 2.7. With
v1v2 and u2v3 ∈ E(G), we have c = d by Property 2.8 (1), a contradiction.
If bothf(u2) and f(u5) are even, it implies that the colors on the 5-cycle
x − u2 − v3 − v4 − u5 are all even, a contradiction to Lemma 2.6 (1). If
f(u2) = 2k+2 and f(u5) = a are odd, then d = 2k+2 because u2v3 ∈ E(G)
and d is even. Thus f(u1) is odd because u1 is a common neighbor of x and
v2. However, f(u1) = 2k +2 because u1 is a common neighbor of x and v5.
It is a contradiction. The proof is similar as f(u5) = 2k + 2 and f(u2) = a

is odd.
3. They are four odd numbers and one even number.

Without loss of generality, let f(v1) be even and color the vertices v2, v3, v4,
v5 as a, a + (2k + 2), a, a + (2k + 2), respectively, where 1 ≤ a ≤ 2k + 1 is
odd. If both f(u2) and f(u5) are odd, it implies that the colors on the 5-cycle
x− u2 − v3 − v4 − u5 are all odd but one is 0, a contradiction to Lemma 2.6
(2). If one of f(u2) and f(u5) is even, i.e. 2k+2, thus f(v1) = 0 or 4k +4.
However, a < f(v1) < a + (2k + 2) since v1 is a common neighbor of v2

and v5. It is a contradiction.
4. They are three even numbers and two odd numbers.
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(a) The three even-colored nodes are consecutive.
Without loss of generality, let f(v1), f(v2) and f(v3) be even and f(v4)
and f(v5) be odd. (i) If 0 < f(v2) < 4k + 4, then f(u1) and f(u3) are
both odd by Property 2.8 (2). It implies that the colors on the 5-cycle
x−u1−v5−v4−u3 are all odd but one 0. It is a contradiction to Lemma
2.6 (2). (ii) If f(v2) = 0 or 4k + 4, then f(v1) = f(v3) = 2k + 2.
Hence f(u4) and f(u5) are both odd by Property 2.8 (2). It implies that
the colors on the 5-cycle x − u4 − v5 − v4 − u5 are all odd but one 0.
It is a contradiction again.

(b) The three even-colored nodes are not consecutive.
Without loss of generality, let f(v1), f(v3) and f(v4) be even and f(v2)
and f(v5) be odd. Let 0 ≤ f(v3) = c ≤ 2k + 2 and f(v3) < f(v4) =
c+(2k+2). (i) If 0 ≤ c < 2k+2, then 2k+2 ≤ c+(2k+2) < 4k+4.
Hence f(u3) = d is odd by Property 2.8 (2) and f(v2) = d + (2k + 2).
By Property 2.8 (1), c = d. It is a contradiction. (ii) If c = 2k + 2, it
implies that f(v4) = 4k+4, f(u5) = 2k+2, f(u2) is odd and f(v1) = 0
or 4k + 4. If f(v1) = 0, it forces f(v5) = 2k + 2, a contradiction. If
f(v1) = 4k+4, f(u2) must be 2k+2 because u2 is a common neighbor
of x and v1. It is a contradiction.

5. They are three odd numbers and two even numbers.

(a) Three odd-colored nodes are consecutive.
Without loss of generality, let f(v1), f(v2) and f(v3) be odd and f(v4)
and f(v5) be even and 0 < f(v4) < 4k + 4. Hence f(u3) and f(u5)
are both odd by Property 2.8(2). It implies that the colors on the 5-cycle
x−u5−v1−v2−u3 are odd but one 0, a contradiction toLemma 2.6 (2).

(b) Three odd-colored nodes are not consecutive.
Without loss of generality, let f(v1), f(v3) and f(v4) are odd and f(v2)
and f(v5) are even, and 0 < f(v3) = c < 2k+2 and 2k+2 < f(v4) =
c + (2k + 2) < 4k + 4. By Property 2.8 (3), f(u4) = 2k + 2. Then
f(v5) = 4k + 4 because f(v5) is even and hence f(u1) = 2k + 2. It
implies that f(v2) = 0 because f(u1)−f(v3) = (2k+2)−c ≥ 0 is odd
and f(v2) is even. Because f(v2) = 0 and f(v5) = 4k + 4, it forces
f(v1) = 2k + 2 is not odd. It is a contradiction.

Hence, if T = {0, 2, 4, ..., 2k}, there is not a T -coloring function of G satisfying
that f(x) = 0 and the edge span of f is 2k + 2. Then, for any k-multiple-of-2-sets
T , there is not a T -coloring function of the Grötzsch graph G with edge-span 2k+2.
It implies that espT (FH(4)) = 2k + 3.

Corollary 2.10. If G = FH(4) and T is a k-multiple-of-s-set, then
(1) espT (G) = spT (G) = 3 as s ≥ 4,
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(2) espT (G) = spT (G) = 3k + 3 as s = 3,
(3) espT (G) = spT (G) = 2k + 3 as s = 2.

Proof. As noted before Theorems 2.1, 2.4 and 2.9, we need only to consider
3k + 3 ≤ espT (G) as s = 3. In the following, we denote x mod 3 by (x)3.

If s = 3, 3 ≤ espT (G) ≤ spT (G) = 3k + 3 by Theorem 2.4 (3). Suppose
3k + 3 > espT (G) and f is a T -coloring function with T -edge-span less than
3k+3 for graph G. Observe that (a−b)3 = ((a)3−(b)3)3 for any integers a, b and
{0, 3, 6, . . . , 3k} ⊆ T , then (f(u)− f(v))3 	= 0 for any two adjacent vertices u, v.
We have (f(u))3 	= (f(v))3 for any two adjacent vertices u, v. Let (f(x))3 = g(x)
for all vertices x of G, then the function g will be a proper 3-coloring of G, a
contradiction to χ(G) = 4. Thus we have 3k + 3 ≤ espT (G).

3. CONCLUSION

In this paper, we discuss the T -edge-span and T -span of the folded hypercube
network of dimension n for a k-multiple-of-s-set T = {0, s, 2s, . . . , ks} ∪ S,
where s and k ≥ 1 and S ⊆ {s + 1, s + 2, . . . , ks − 1}. Note that when s = 1, T

is also called a k-initial set. Our results are shown in Table 1.

Table 1. espT (G) and spT (G) for G = FH(n) and a k-multiple-of-s-sets T

n χ s espT (G), spT (G) where G = FH(n)

1 espT (G) = spT (G) = k + 1n is odd 2
≥ 2 espT (G) = spT (G) = 1
1 k + 1 ≤ espT (G) ≤ spT (G) = 2k + 2

3 2 espT (G) = spT (G) = 2k + 2
≥ 3 espT (G) = spT (G) = 2

n is even 1 k + 1 ≤ espT (G) ≤ spT (G) = 3k + 3
2 2k + 2 ≤ espT (G) ≤ spT (G) = 2k + 34
3 3 ≤ espT (G) ≤ spT (G) = 3k + 3

≥ 4 espT (G) = spT (G) = 3

REFERENCES

1. G. J. Chang, D. D.-F. Liu, Xuding Zhu, Distance graphs and T -coloring, J. Combin.
Theory, Ser. B, 75(2) (1999), 259-269.

2. M. B. Cozzens and F. S. Roberts, T -Colorings of graphs and the channel assignment
problem, Congressus Numerantium, 35 (1982), 191-208.



1340 Justie Su-Tzu Juan, I-fan Sun and Pin-Xian Wu

3. A. El-Amawy and S. Latifi, Properties and performance of folded hypercubes, IEEE
Trans. on Parallel Distributed Syst., 2(1) (1991), 31-42.

4. Xinmin Hou, Min Xu and Jun-Ming Xu, Forwarding indices of folded n-cubes, Disc.
Appl. Math., 145(3) (2005), 490-492.

5. S.-J. Hu, S.-T. Juan and G. J. Chang, T -colorings and T -edge spans of graphs,
Graphs and Combinatorics, 15 (1999), 295-301.

6. R. Janczewski, Divisibility and T -span of graphs, Disc. Math., 234(1-3) (2001),
171-179.

7. C.-N. Lai, G.-H. Chen and D.-R. Duh, Constructing one-to-many disjoint paths in
folded hypercubes, IEEE Trans. on Computers, 51(1) (2002), 33-45.

8. S. Lakshmivarahan, J.-S. Jwo and S. K. Dhall, Symmertry in interconnection networks
based on Cayley graphs of permutation groups: A survey, Parallel Comput., 19
(1993), 361-407.

9. D. D.-F. Liu, T -graphs and the channel assignment problem, Disc. Math., 161(1-3)
(1996), 197-205.

10. D. D.-F. Liu and R. Yeh, Graph homomorphism and no-hole T -coloring, Congressus
Numerantium, 138 (1999), 39-48.

11. A. Raychaudhuri, Intersection assignments, T -coloring, and powers of graphs, Ph.D.
Thesis, Department of Mathematics, Rutgers University, New Brunswich, NJ, 1985.

12. A. Raychaudhuri, Further results on T -coloring and Frequency assignment problems,
SIAM J. Disc. Math., 7(4) (1994), 605-613.

13. F. S. Roberts, T -colorings of graphs: recent results and open problems, Disc. Math.,
93 (1991), 229-245.

14. B. A. Tesman, T -colorings, list T -colorings, and set T -colorings of graphs, Ph.D.
Thesis, Department of Mathematics, Rutgers University, New Brunswich, NJ, 1989.

15. B. A. Tesman, List T -colorings of graphs, Disc. Appl. Math., 45 (1993), 277-289.

16. D. Wang, Embedding hamiltonian cycles into folded hypercubes with faulty links, J.
of Parallel and Distributed Computing, 61(4) (2001), 545-564.

17. J.-M. Xu and M. Ma, Cycles in folded hypercubes, Appl. Math. Lett., 19(I.2),
(2006), 140-145.

Justie Su-Tzu Juan
Department of Computer Science and Information Engineering,
National Chi Nan University,
Taiwan
E-mail: jsjuan@ncnu.edu.tw



T -Coloring on Folded Hypercubes 1341

I-fan Sun
Department of Applied Mathematics,
I-Shou University,
Taiwan

Pin-Xian Wu
Department of Computer Science and Information Engineering,
National Chi Nan University,
Taiwan


