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GROUP TESTING IN BIPARTITE GRAPHS'

Su-Tzu Juan and Gerard J. Chang”

Abstract. This paper investigates the group testing problem in graphs as
follows. Given a graph G = (V; E), determine the minimum number t(G)
such that t(G) tests are sufficient to identify an unknown edge e with each
test specifies asubset X g V and answers whether the unknown edge e isin
G[X] or not. Damaschke proved tha dlog, e(G)e - t(G) - dlog,e(G)e +1
for any graph G; where e(G) is the number of edges of G. While there are
infinitely many complete graphs that attain the upper bound, it was conjectured
by Chang and Hwang that the lower bound is attained by all bipartite graphs.
This paper verifies the conjecture for bipartite graphs G with e(G) - 24 or
2Ki 1< g(G) - 2Kil+2ki3 4+ 2ki64+19¢2 5" j 1fork, 5.

1. INTRODUCTION

The idea of group testing originated from the blood testing in 1942 by Dorfman,
who published the first paper [8] on this topic. While traditional group testing
literature employs probabilistic models Li [12] was the first to study combinatorial
group testing as follows. Condder a population V of n items consiging of an
unknown subset D p V of d defectives. The problem is to identify the set D
by a sequence of group tests Each test is on a subset X of V with two possble
outcomes. a pure outcome indicates that X \ D = ;, and a contaminated outcome
indicates that X \ D & ;. The goal is to minimize the number M (d; n) of teds
under the worg scenario. A bes dgorithm under this god is cdled a minmax
algorithm. For a good reference, see the book by Du and Hwang [9].
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i¢
As the sample space of the problem consists of 'Q samples, we have the fol-
lowing informetion-theoretic lower bound

nT

M(d; n) , dlog, q

e,
where dxe (bxc) denotes the smallest (largest) integer not less (greater) than x.
Using a bisection method, it is easy to get

M (1; n) = dlog, ne:

On the other hand, it is hard to determine M (d; n) for d , 2. Even for the case of
d = 2, we only know that
H n‘ﬂ H n‘ﬂ
dlog, ) e - M(2;n) - dlog, ) e+1:

Toward the study of M (2; n), Chang and Hwang [4, 5] considered the problem
of identifying two defectives in two digoint sets A and B, each containing exactly
one defective. At first, it seems that one cannot do better than working on the two
disoint sets separaely. Surprigngly, a smal example with jAj = 3 and jBj = 5
shows tha 4 = dlog,(3 ¢5)e tests is enough rather than identifying the defectives
in A and B separatdy, which takes dlog, 3e + dlog, 5e = 5 teds. In general, they
[5] proved that the minmax number to identify the only defectivein A and the only
defective in B is

dlog, (mn)e;

where m = jAj and n = jBj. By asociaing each item to a vertex, Spencer [4]
observed that the sample gpace of this problem can be represented by a bipartite
graph where each edge represents a sample in A £ B. (Throughout this paper we
presume that the reader is familiar with the basic-theoretic notetions. See [3, 13]
if necessary.) Chang and Hwang [4] conjectured that a bipartite graph with 2%
(k . 1) edges always has an induced subgraph with 2Ki 1 edges or equivaently,
t(G) =dlog, e(G)e for any bipartite graph G. Whil e the conjecture remains open,
it has stimulated forthcoming research cagting group testing on graphs.

Aigner [1] proposed the following problem: Given agraph G = (V; E), deter-
mine the minimum number t(G) such that t(G) tests are sufficient in the worg case
to identify an unknown edge e when each teg specify a subset X p V and answers
whether the unknown edge e isin G[X] or not, where G[X] is the subgraph of G
induced by the vertex set X. It isthen dear tha t(G) = 0 if G has exactly one
edge, and otherwise

t(G) = 1+ min maxft(G[X]); t(G i E(X))g:
Xu v
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The information-theoretic lower bound for this parameter is
dlog,e(G)e - t(G);

where e(G) denotes the number of edges in G. Chang and Hwang's reault [5]
becomes that
t(Km;n) = dlog, e(Km;n)e = dloga(mn)e

for complete bipartite graphs Km:nh, ad their conjecture is
Conjecture 1 [4]. For any bipartite graph G; we have t(G) = dlog, e(G)e.

From the result in [6], it follows that t(Kn) - dlog, e(Kn)e + 1, and there are
infinitdly many complete graphs attaining the upper bound. Althofer and Triesch [ 2]
showed that t(G) - dlog, e(G)e+1 for bipartite graphs, and t(G) - dlog, e(G)e+3
for arbitrary graphs. Damaschke [7] proved that t(G) - dlog, e(G)e+1 for arbitrary
graphs. Infact, he proved a more generd result that t(G) = dlog, e(G)e for agraph
Gwith 2ki 1 < g(G) - 2Ki 1+%(l2&z_1 whenk | 13 ande(G) 2 [1;14][[17;25][
[33; 45] [ [65; 83] [[[129; 155] [[[257; 295] [ [513;568] [[[1025; 1105] [ [2049; 2165].

The attempt of this pgper is to determine the largest number (k) such that
t(G) = dlog, e(G)e for any bipartite graph G with 2ki1 < ¢(G) - f(k). Notethat
Conjecture 1 says f(k) = 2K for k , 0. In this paper, we verify the conjecture for
k - 4, and show that (k) , 2Ki 14 2ki3 4 2Ki 6 419 ¢2"%" i Lfork, 5.

2. GrAPHS G wiTH t(G) = dlog, e(G)e

Itis of our interest to study which graphs G saisfy t(G) = dlog, e(G)e. The
first well-known result of thiskind is

Theorem 2 [5]. For any complete bipartite graph Km:n; we have
t(Km:n) = dlog, e(Km:n)e = dlog,(mn)e:
It is not hard to see that acydic graphs dso have this property.
Theorem 3. For any acydic graph G; we have t(G) = dlog, e(G)e.
Proof. Removing successivey vertices of degree one, we can get induced sub-
graphs of G whose numbers of edges range from 1 to e(G). This together with the

information-theoretic lower bound gives the theorem. [ ]

Damaschke's result [7] is for general graphs.
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Theorem 4 [7]. For any graph G with 2ki t < g(G) - 2ki1 + i1 ¢2"%" and
k., 13;ande(G) 2 [1;14] [[17;25] [ [33;45] [ [65;83] [ [129; 155] [ [257;295] L
[613;568] [ [1025; 1105] [ [2049; 2165]; we have t(G) = dlog, e(G)e.

In the remaining part of this paper, we employ Damaschke s techniques towards
Conjecture 1. For a graph G, dencte by +(G) the minimum degree of a vertex in
G.

Lemma 5. If G is a bipartite graph with +(G) . n; thene(G) . n2.

Proof. The lemma follows from the fact that any part of the vertex set of G has
a least n vertices and any vertex is of degree at lesst n. [ ]

Lemma®6.1fn®j 1- b<(n+1)’j 1anda=bj n+1; then any bipartite
graph G with e(G) , a hasan induced subgraph H witha - e(H) - b.

Proof. Choose an induced subgrgph H of G with as few vertices as possible
auch that a - e(H). Assume e(H) , b+ 1. By the choice of H, for any vertex
x of degree (H) in V(H), wehavee(H j X) - aj 1 <b+1- e(H), which
implies that

*¥(H) =degy(X) =e(H)i eHi x), bj a+2=n+1

Assume that £(H) = n+1i, wherei , 1. Then, according to Lemma 5, e(H) ,
(n + i)2. Therefore,

e(Hi x)=eMH)i (). (n+i)?i (n+i), n?+n
=(n+D?jlin>bjn=aj 1l
acontradiction. Hencea - e(H) - b asdedred. [ |
Lemma 7. Suppose vertices x and y are in the same part of a bipartite graph

G. If degg(X)+degg(y) . 2m; then G has an induced subgraph with exactly 2m
edges.

Proof. Suppose H is the subgraplp_.pf G induced by C [ fX;yg, where C is the
st of al neighbors of x and y. As |, degy (V) = degg(X) + degg(y) . 2m
@d degn (V) isl or 2 for any vertex v in C, there isa subset D p C such that

vopdegy(v) = 2m. Hence D [ fx;yg induces a subgraph with exactly 2m
edges [ ]

Theorem 8. Conjecture 1 is valid for k - 4.
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Proof. The theorem is dearly true for k - 1. Now consider a bipartite graph
G of 2 verticesfor 2 - k - 4. It is suffident to prove that G has an induced
subgraph with 2€i 1 edges. By Lemma 7, we may assume

(=) degg(x) +degg (y) < 2Ki?
for any two vertices x and y in the same part of G.

This in tumn implies that for 2 - k - 3 every vertex of G has degree at most
two, which allows the existence of an induced subgraph of 2Ki 1 edges. So now
consider the case of k = 4.

According to (1), any part of G has & most one vertex of degree a leest 4.
Furthermore, either there is some part in which there are some vertices whose degree
um is8, or esethe degree sequence of each part is(4; 3;3;3;3) or (3;3;3;3; 3;1).
For the former case, those vertices of degree sum 8 together with their neighbors
induce a subgrgph of 8 edges. For the later case, choose a vertex x in part A with
exactly 3 neighbors y1;y2;ys in B. Then, choose a vertex z in B j fy1;y2;Y30
with exactly 3 neighbors wy;wo; w3 in A j fxg. At lesst one of wq;wo; ws, say
wi, isof degree 3. Then Gj TXx;z; wig isan induced subgraph of G with exactly
8 edges [ ]

Theorem 9. f(k +1) , 2f(k) + 1 bpf(k) +1c.

Proof. Supposen?j 1 - f(k)< (n+1)%j 1,ie,n= bpf(k) +1c. We only
need to show that for any bipartite grgph G with 2f (k) +1j n edges t(G) - k+1.
Choosngb = f(k) and applying Lemma 6, we infer that G has an induced subgraph
H with

f(k)+1jn-eH) - fK):

And hence
f(k)+1ijn-e(Gj E(H)) - fKk):

Therefore, t(H) - kand t(Gj E(H)) - Kk, which imply
t(G) - 1+maxft(H);t(Gi E(H))g - k+1:
This completes the proof of the theorem. [ |

To edimate a good lower bound for (k) by using the aove theorem, we
consider the sequence fhy : k ., 4g defined by by = 16 and

bk=2bkil+1i bpbki1+1C
for k , 5. Itisdea that (k) , be for k , 4. Note that
hs =2¢16 +1 j bp16+1c=29:
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Lemma 10. For any k _ 5; we haveby +1 - 15 ¢2Ki 4,

Proof. Firg, bs+1 = 29+1 = 15¢25% 4, Supposek , 5andbx+1 - 15¢2Ki 4
holds. Then

P _ _
bke1+1=2bk+1jb bg+1lc+1- 2b+2- 2(15¢2Ki4) =15 ¢2k+Di4
and 0 the lemma follows from induction. [ |

Theorem 11. For k . 5 we have by , 2Ki 1 +2Ki3 4 2ki 6.4 19¢2"%" j 1.

Proof. The theorem is truefor Kk =5 ashs =29 =251 1 + 251 3 + 2516 + 19 ¢
5i7 .
2 2 j 1. Supposek , 6 and thetheoremistrue for k j 1. Then

by =2bx; 1+ 1j bpbki 1 +1c (by the definition of by)

, 2by 1+ 1 P15 g2'%° (by Lemma 10)

P15 ks

L 2K 24 2Ki 44 ki 7 419625 § 1)+ 1§
(by the induction hypothesis)
= 2Ki 14 ki3 4 ki 6 +(19p§i ZpE)szl il

P5> 19):

_2Kily ki3 okib 4 19¢2"5" 1 (since 1977 2

The theorem then follows [ ]

Corollary 12. If G is a bipartite graph with 241 * < e(G) - 2Ki 1 +2Ki % +
2i 6 419 ¢2"5" | 1andk , 5;then t(G) = dlog, e(G)e.
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