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Abstract. Given a nonnegative integer r, a no-hole (r +1)-distant coloring, called Nr-coloring,
of a graph G is a function that assigns a nonnegative integer (color) to each vertex such that the
separation of the colors of any pair of adjacent vertices is greater than r, and the set of the colors used
must be consecutive. Given r and G, the minimum Nr-span of G, nspr(G), is the minimum difference
of the largest and the smallest colors used in an Nr-coloring of G if there exists one; otherwise, define
nspr(G) = ∞. The values of nsp1(G) (r = 1) for bipartite graphs are given by Roberts [Math.
Comput. Modelling, 17 (1993), pp. 139–144]. Given r ≥ 2, we determine the values of nspr(G) for
all bipartite graph with at least r − 2 isolated vertices. This leads to complete solutions of nsp2(G)
for bipartite graphs.
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1. Introduction. The T -coloring of graphs models the channel assignment prob-
lem introduced by Hale [6] in communication networks. In the channel assignment
problem, several transmitters and a forbidden set T (called T -set) of nonnegative
integers with 0 ∈ T are given. We assign a nonnegative integral channel to each
transmitter under the constraint that if two transmitters interfere, the difference of
their channels does not fall within the given T -set. Two transmitters may interfere
due to various reasons such as geographic proximity and meteorological factors. To
formulate this problem, we construct a graph G such that each vertex represents a
transmitter, and two vertices are adjacent if their corresponding transmitters interfere.

Thus, we have the following definition. Given a T -set and a graph G, a T-coloring
of G is a function f : V (G) → Z+ ∪ {0} such that

|f(x)− f(y)| /∈ T if xy ∈ E(G).

Note that if T = {0}, then T -coloring is the same as ordinary vertex-coloring.
A no-hole T -coloring of a graph G is a T -coloring f of G such that the set

{f(v) : v ∈ V (G)} is consecutive (the no-hole assumption). When T = {0, 1} and
T = {0, 1, 2, . . . , r}, a no-hole T -coloring is also called an N-coloring [16] and an Nr-
coloring (or no-hole (r+1)-distant coloring) [17], respectively. That is, an Nr-coloring
of a graph G is a vertex coloring f : V (G) → Z+ ∪ {0} such that the following two
conditions are satisfied:

• |f(x)− f(y)| ≥ r + 1 if uv ∈ E(G);
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• the set {f(v) : v ∈ V (G)} is consecutive.
In terms of efficiency of the usage of the channels (colors), the variable T -span

has been considered. The span of a T -coloring f is the difference of the largest and
the smallest colors used in f(V ); the T -span of a graph G, spT (G), is the minimum
span among all T -colorings of G.

The T -spans for different families of graphs and for different T -sets have been
studied extensively (see [3, 4, 5, 10, 11, 12, 14, 15, 18]). It is known [3, 10] that if T
is an r-initial set, that is, T = {0, 1, 2, . . . , r} ∪A where A is a set of integers without
multiples of (r + 1), then the following holds for all graphs:

(∗) spT (G) = (χ(G)− 1)(r + 1),

where χ(G), the chromatic number of G, is the minimum number of colors to properly
color vertices of G.

It is known [3] and not difficult to learn that for any given T -set and any graph
G, a T -coloring always exists. However, a no-hole T -coloring does not always exist.
For instance, as T = {0, 1}, then Kn, the complete graph with n vertices, does not
have a no-hole T -coloring for any n ≥ 2.

The minimum span of a no-hole T -coloring for a graph G is denoted by nspT (G).
If there does not exist a no-hole T -coloring for G, then nspT (G) = ∞. If T =
{0, 1, 2, . . . , r}, denote nspT (G) by nspr(G).

A no-hole T -coloring is also a T -coloring. Hence by (∗), a natural lower bound for
nspr(G) is (χ(G)−1)(r+1). Roberts [16] and Sakai and Wang [17] studied N-coloring
and Nr-coloring, respectively. Among the findings in [16, 17] are the results about the
existence of an N-coloring and an Nr-coloring for several families of graphs including
paths, cycles, bipartite graphs, and 1-unit sphere graphs. The authors also compare
the span of such a coloring (if there exists one) with the lower bound (χ(G)−1)(r+1).
The N-colorings and Nr-colorings studied in [16, 17] are not necessarily optimal; i.e.,
the spans are not always the minimum.

This article focuses on the exact values of the minimum Nr-span, nspr(G), espe-
cially for bipartite graphs, i.e., graphs with χ(G) ≤ 2. In section 2, we give preliminary
results for general graphs. In section 3, we explore the values of nspr(G) for bipartite
graphs. The solutions of nsp1(G) for bipartite graphs are given by Roberts [16]. We
determine the values of nspr(G) for any bipartite graph G with at least r− 2 isolated
vertices. This result also leads to a complete description of the values of nsp2(G) for
all bipartite graphs.

2. Preliminary results. In this section, we present several results about the
minimum Nr-span for general graphs. We show a number of upper and lower bounds
of nspr(G) for different types of graphs. In order to find the minimum span, without
loss of generality, we assume that the color 0 is always used in any Nr-coloring.

If |V (G)| = n and nspT (G) < ∞, then by definition a trivial upper bound for
nspT (G) is n − 1. On the other hand, any no-hole T -coloring is also a T -coloring,
hence we have the following proposition.

Proposition 2.1. For any T -set and any graph G with n vertices, spT (G) ≤
nspT (G); and nspT (G) ≤ n− 1 if nspT (G) <∞.

Combining Proposition 2.1 and (∗), we have the following proposition.
Proposition 2.2. For any r ∈ Z+ and any graph G with chromatic number

χ(G), (χ(G)− 1)(r + 1) ≤ nspr(G).
With the following result, we show a lower bound of nspr(G) in terms of r and

the number of isolated vertices in G.
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Theorem 2.3. Suppose r ∈ Z+ and G is a graph with i isolated vertices, i ≥ 0,
and at least one edge. Then nspr(G) ≥ max{2r − i+ 1, r + 1}.

Proof. It suffices to show the result when nspr(G) is finite. Because G has at
least one edge, nspr(G) ≥ r + 1. Thus the lemma holds if i ≥ r.

Suppose i < r. Let f be an optimal Nr-coloring of G. By the no-hole assumption
of an Nr-coloring, the colors r, r− 1, . . . , 2, 1, 0, must be used by some vertices. Since
G has only i isolated vertices and i < r, there exists a nonisolated vertex u with
r − i ≤ f(u) ≤ r. Because u is nonisolated, there exists some vertex v such that
uv ∈ E(G). Then f(v) ≥ f(u), for otherwise 0 ≤ f(u) − f(v) ≤ r, a contradiction to
uv ∈ E(G). Therefore, we have

f(v) ≥ f(u) + r + 1 ≥ r − i+ r + 1 = max{2r − i+ 1, r + 1}.
This implies nspr(G) ≥ max{2r − i+ 1, r + 1}.

The union of two vertex-disjoint graphs G and H, denoted by G∪H, is the graph
with vertex set V (G ∪H) = V (G) ∪ V (H) and edge set E(G ∪H) = E(G) ∪ E(H).
For the case in which H has exactly one vertex x, G ∪H is denoted by G ∪ {x}.

The inequality nspr(G) ≤ nspr(G ∪ H) does not always hold. For instance, if
G = K2, then nsp1(G) = ∞, while nsp1(G ∪ {x}) = 2. In the rest of the section, we
present several results on unions of graphs.

Theorem 2.4. Suppose G is a graph with at least one edge; then
nspr+1(G ∪ {x}) ≥ nspr(G) + 1.

Proof. It suffices to show the result when nspr+1(G ∪ {x}) is finite. Suppose f is
an Nr+1-coloring of G ∪ {x}. Define a coloring g on V (G) by

g(v) =

{
f(v) if f(v) < f(x) or f(v) = 0,

f(v)− 1 if f(v) ≥ f(x) and f(v) > 0.

It is straightforward to verify that g is an Nr-coloring of G and the span of g is one
less than the span of f . Therefore, nspr+1(G ∪ {x}) ≥ nspr(G) + 1.

Theorem 2.5. Suppose G is a graph with nspr(G) = q(r + 1) + j, where q ≥ 1
and 0 ≤ j ≤ r, and H is a graph with q vertices. Then nspr+1(G∪H) ≤ nspr(G)+q.

Proof. It suffices to show the result when nspr(G) <∞. Let f be an optimal Nr-
coloring of G and f(V (G)) = {0, 1, . . ., nspr(G)}. Suppose V (H) = {x1, x2, . . . , xq}.
Define a coloring g on G ∪H, g : V (G ∪H) → Z+ ∪ {0}, by

g(v) =

{

 (r+2)f(v)

r+1 � if v ∈ V (G),

k(r + 2)− 1 if v = xk ∈ V (H).

It is enough to show that g is an Nr+1-coloring for G∪H. Because f is onto, therefore
g(V (G ∪ H)) is a consecutive set; indeed g(V (G ∪ H)) = {0, 1, 2, . . . ,nspr(G) + q}.
If uv ∈ E(G ∪ H), then either uv ∈ E(G) or uv ∈ E(H). If uv ∈ E(H), then
|g(u) − g(v)| ≥ r + 2. If uv ∈ E(G), without loss of generality, assume f(u) > f(v).

Since f(u)−f(v) ≥ r+1, we have (r+2)f(u)
r+1 − (r+2)f(v)

r+1 ≥ r+2, so g(u)−g(v) ≥ r+2.
Hence g is an Nr+1-coloring with span nspr(G) + q. This completes the proof.

Note that the result in Theorem 2.5 is not always true if the assumption nspr(G) =
q(r + 1) + j does not hold. For instance, let G = K2 ∪ rK1 and H = K3; then
nspr(G) = r + 1 for any r. However, nspr+1(G ∪H) = ∞ for any r ≥ 4.

Corollary 2.6. If G is a graph with r + 1 ≤ nspr(G) ≤ 2r + 1, then
nspr+1(G ∪ {x}) = nspr(G) + 1.
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Proof. The corollary follows from Theorems 2.4 and 2.5.
Consider the graph G in Figure 2.1. According to Theorem 2.3, nsp1(G) ≥ 3 and

so the labeling in the figure gives that nsp1(G) = 3. According to Corollary 2.6, we
have nsp2(G ∪ {x}) = nsp1(G) + 1 = 4.
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Fig. 2.1. Optimal N-coloring for G and optimal N2-coloring for G ∪ {x}.

3. Main results. In this section, we explore the minimum Nr-span for bipartite
graphs. It turns out that the number of isolated vertices in a bipartite graph plays
a key role for this problem. We give the values of nspr(G) for all bipartite graphs G
with at least r−2 isolated vertices. This result leads to complete solutions of nsp2(G)
for all bipartite graphs G.

In this section, a bipartite graph is conventionally denoted by G = (A,B, I, E),
where I is the set of all isolated vertices and (A,B) is a bipartition of all nonisolated
vertices such that each edge in G has one end in A and the other in B. A vertex v is
called an A-, B- or I-vertex if x ∈ A,B, or I, respectively.

The bipartite-complement Ĝ of a bipartite graph G = (A,B, I, E) with E �= ∅ is

the bipartite graph Ĝ with vertex set V (Ĝ) = A ∪B and edge set

E(Ĝ) = {ab : a ∈ A, b ∈ B, ab �∈ E}.
Note that the set of isolated vertices in Ĝ is not specified in the notation. Moreover,
we shall denote B′ the set of all B-vertices not adjacent to any A-vertex in Ĝ. If G is a
bipartite graph, then Ĝ is a subgraph of Gc, the complement of G (i.e., V (Gc) = V (G)
and E(Gc) = {uv : u �= v and uv /∈ E(G)}).

The N1-coloring for bipartite graphs has been studied by Roberts [16]. Although
the concept of the minimum N1-span was not introduced explicitly in [16], the follow-
ing theorem, which completely determines the values of nsp1(G) for bipartite graphs,
can be generated from [16].

Theorem 3.1 (see Roberts [16]). If G = (A,B, I, E) is a bipartite graph with
E(G) �= ∅, then

nsp1(G) =


2 if |I| ≥ 1,

3 if |I| = 0 and E(Ĝ) �= ∅,
∞ if |I| = 0 and E(Ĝ) = ∅.
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As examples to Theorem 3.1, consider the graphs G1 and G2 in Figure 3.1. As
|I| ≥ 1 for G1, we have nsp1(G1) = 2. For G2, the facts |I| = 0 and E(Ĝ) �= ∅ imply
nsp2(G2) = 3.
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Fig. 3.1. Two examples of optimal N-colorings for bipartite graphs.

Sakai and Wang [17] characterize the existence of an Nr-coloring by using the
Hamiltonian r-path. The d-path on n vertices, v1, v2, . . . , vn, has the edge set {vivj :
1 ≤ |i−j| ≤ d}. Figure 3.2 shows a 2-path with seven vertices. A 1-path on n vertices
is an ordinary path denoted as Pn. A Hamiltonian d-path of a graph G is a d-path
covering each vertex of G exactly once.
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Fig. 3.2. A 2-path with seven vertices.

Theorem 3.2 (see Sakai and Wang [17]). G has an Nr-coloring if and only if Gc

has a Hamiltonian r-path. Indeed, if f is an Nr-coloring such that f(v1) ≤ f(v2) ≤
. . . ≤ f(vn), then v1, v2, . . . , vn is a Hamiltonian r-path in Gc.

If the lower bound of nspr(G) in Theorem 2.3 is attained by some graph G,
according to Proposition 2.2, G must be bipartite. Such graphs do exist. In the next
theorem, we show a sufficient condition for such graphs.

Theorem 3.3. Suppose G = (A,B, I, E) is a bipartite graph with at least one
edge. If |I| ≥ r, then nspr(G) = r+1; if |I| ≤ r−1 and there exist {a1, a2, . . . , ar−|I|} ⊆
A and {b1, b2, . . . , br−|I|} ⊆ B such that ajbk /∈ E(G) for j + k ≥ r − |I| + 1, then
nspr(G) = 2r − |I|+ 1.

Proof. It is obvious that nspr(G) ≥ r + 1, since E(G) �= ∅.
If |I| ≥ r, coloring A-vertices with 0, B-vertices with r + 1, and I-vertices with

1, 2, . . . , r gives an Nr-coloring. Therefore, nspr(G) = r + 1.
If |I| ≤ r − 1, by Theorem 2.3, nspr(G) ≥ 2r − |I| + 1. Hence it suffices to find
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an Nr-coloring with span at most 2r− |I|+1. Define a coloring by the following four
steps:

(1) color a1, a2, . . . , ar−|I| with 1, 2, . . . , r − |I|, respectively;

(2) color I-vertices with r − |I|+ 1, r − |I|+ 2, . . . , r;

(3) color br−|I|, br−|I|−1, . . . , b1 with r + 1, r + 2, . . . , 2r − |I|, respectively; and

(4) color all the remaining A-vertices with 0 and B-vertices with 2r − |I|+ 1.

By the assumption that ajbk /∈ E(G) for j + k ≥ r − |I| + 1, it is easy to verify that
the coloring defined above is an Nr-coloring with span at most 2r − |I|+ 1.

Corollary 3.4. Let G = (A,B, I, E) be a bipartite graph with at least one edge.

(a) If |I| ≤ r − 1 and E(Ĝ) = ∅, then nspr(G) = ∞.

(b) If |I| = r − 1, then nspr(G) = r + 2 if and only if E(Ĝ) �= ∅.
(c) If |I| = r − 2 and there exists a P4 in Ĝ, then nspr(G) = r + 3.

Proof. We need only to show (a), since (b) and (c) follow from Theorem 3.3.

Suppose |I| ≤ r − 1 and E(Ĝ) = ∅. Then, G − I is a complete bipartite graph
K|A|,|B|. Combining this with the assumption that |I| ≤ r− 1, G does not admit any
Nr-coloring, so nspr(G) = ∞.

Combining Theorem 3.3 and Corollary 3.4(b), the values of nspr(G) for bipartite
graphs with at least r − 1 isolated vertices are settled. In the rest of the article,
we shall focus on the Nr-coloring for bipartite graphs G = (A,B, I, E) with at most
r − 2 isolated vertices. By Corollary 3.4(a), we may assume 2 ≤ |A| ≤ |B|. In the
rest of the section, we search for the exact value of nspr(G) to complete the case as

|I| = r − 2. By Corollary 3.4(c), it suffices to consider the case that Ĝ contains no
P4. We first show a lemma which is a key to settle this problem.

For any real number x, denote max{x, 0} by x+. For any two integers a and b,
a ≤ b, let [a, b] denote the set {a, a+ 1, a+ 2, . . . , b}.

Lemma 3.5. Let G = (A,B, I, E) be a bipartite graph with 2 ≤ m = |A| ≤ |B|,
|I| ≤ r − 2, and Ĝ contains no P4. If nspr(G) <∞, then the following are all true:

(a) In the graph Ĝ, every B-vertex is adjacent to at most one A-vertex.
(b) There exist an arrangement Π = (A1, A2, . . . , Am) of A and nonnegative inte-

gers d1 = 0, c1, d2, c2, d3, . . . , dm, cm = 0 such that deg
Ĝ
(Ak) = dk+ck for 1 ≤

k ≤ m and |I| ≥ q(Π) :=
∑m−1

k=1 qk, where qk = max{(r− ck)
+, (r− dk+1)

+}.
(c) nspr(G) ≥ (m− 1)(2r + 1)− |I|.
(d) If B′ �= ∅, then |I| − q(Π) ≥ q′(Π) := min1≤k≤m−1 q

′
k, where q′k = min{(r −

ck)
+, (r − dk+1)

+}.
(e) If B′ �= ∅, then nspr(G) ≥ max{2r + 2, (m − 1)(2r + 1) − |I| + s(Π) + 1},

where s(Π) = min1≤k≤m−1{qk : q′k ≤ |I| − q(Π)}.
Proof. Suppose f is an optimal Nr-coloring for G. According to Theorem 3.2,

Gc has a Hamiltonian r-path P = v1, v2, . . . , v|V (G)| with 0 = f(v1) ≤ f(v2) ≤
· · · ≤ f(v|V (G)|). Without loss of generality, we assume the order of A-vertices on
the r-path P is Π = (A1, A2, . . . , Am). We call this an arrangement of A. Hence
f(A1) ≤ f(A2) ≤ · · · ≤ f(Am).

On P , let an A- (or B-) run be a maximal interval of consecutive A ∪ I- (or
B ∪ I-) vertices, starting and ending with A- (or B-) vertices. Note that there may
exist some I-vertices within one run or between two consecutive runs; and the runs
are alternating between A and B.

It is impossible to have two consecutive runs with at least two vertices in each.
For if it is possible, then there exist x, y ∈ A and z, w ∈ B whose order in P is
(x, y, z, w), and the vertices between x and w, other than y and z, are I-vertices.
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Because |I| ≤ r − 2, (x− z − y − w) forms a P4 in Ĝ, a contradiction.
Analogously it is impossible to have two consecutive singleton runs (except pos-

sibly the first run and the last run). For if it is possible, then we get a P4 in Ĝ
by connecting the two consecutive singleton A-run and B-run with the B-vertex and
A-vertex before and after them.

We conclude that either all A-runs or all B-runs are singletons. As |A| ≤ |B|, all
A-runs are singletons and each B-run (except possibly the first run and/or the last
run) contains at least two vertices. Therefore between any Ak and Ak+1 on P , there
are only B- or I-vertices. Since |I| ≤ r − 2 and P is an Hamiltonian r-path in Gc,
there exist at least two B-vertices between Ak and Ak+1 that are adjacent to Ak.

To prove (a), suppose to the contrary that there exists v ∈ B such that vAk, vA� ∈
E(Ĝ) for some k < &. Then between Ak and A� on P there exists u ∈ B−{v} adjacent

to Ak in Ĝ. Thus (u − Ak − v − A�) forms a P4 in Ĝ, a contradiction. This proves
(a).

Claim. For all 1 ≤ k ≤ m− 1, we have f(Ak+1)− f(Ak) ≥ r + 2.
Proof of claim. Suppose f(Ak+1)−f(Ak) ≤ r+1 for some k. Then the B-vertices

between Ak and Ak+1 on P are adjacent to both Ak and Ak+1 in Ĝ, contradicting
(a).

Note that if A1 = vi, then P ′ = vi, vi−1, . . . , v2, v1, vi+1, vi+2, . . . , v|V (G)| is also
a Hamiltonian r-path in Gc, or, equivalently, f ′ defined by f ′(vj) = f(v1+i−j) for
1 ≤ j ≤ i and f ′(vj) = f(vj) for i < j ≤ |V (G)| is also an optimal Nr-coloring of
G. Therefore, without loss of generality, we may assume A1 = v1. Similarly, we may
assume that Am = v|V (G)|. Put

D1 := {y ∈ B : yA1 ∈ E(Ĝ) and f(y) < f(A1)} and d1 := |D1|,
C1 := {x ∈ B : xA1 ∈ E(Ĝ) and f(A1) ≤ f(x)} and c1 := |C1|,
Dk := {y ∈ B : yAk ∈ E(Ĝ) and f(y) ≤ f(Ak)} and dk := |Dk| for 2 ≤ k ≤ m,

Ck := {x ∈ B : xAk ∈ E(Ĝ) and f(Ak) < f(x)} and ck := |Ck| for 2 ≤ k ≤ m,
Ik := {z ∈ I : f(Ak) < f(z) < f(Ak+1)} and ik := |Ik| for 1 ≤ k ≤ m− 1,
I ′k := {z ∈ I : f(Ak) < f(z) ≤ f(Ak) + r} and i′k := |I ′k| for 1 ≤ k ≤ m− 1,
I ′′k := {z ∈ I : f(Ak+1)− r ≤ f(z) < f(Ak+1)} and i′′k := |I ′′k | for 1 ≤ k ≤ m− 1.

Then d1 = cm = 0 and deg
Ĝ
(Ak) = dk + ck for 1 ≤ k ≤ m. By (a), the Ci’s and

Dj ’s are all disjoint. By the claim, for any 1 ≤ k ≤ m, I ′k ∪ I ′′k ⊆ Ik (while I ′k and
I ′′k are not necessarily disjoint). Furthermore, it is clear that for any 1 ≤ k ≤ m− 1,
f−1[f(Ak)+1, f(Ak)+r] ⊆ Ck∪I ′k, since if f(Ak) < f(x) ≤ f(Ak)+r, then x ∈ Ck∪I ′k.
Similarly, f−1[f(Ak+1)− r, f(Ak+1)− 1] ⊆ Dk+1 ∪ I ′′k . Hence we have ck + i′k ≥ r and
dk+1 + i′′k ≥ r, implying that ik ≥ max{i′k, i′′k} ≥ max{(r − ck)

+, (r − dk+1)
+} = qk

for 1 ≤ k ≤ m− 1. Therefore,

(∗∗) |I| ≥
m−1∑
k=1

ik ≥
m−1∑
k=1

qk = q(Π).

This completes the proof of (b).
Now we have f−1[f(Ak) + 1, f(Ak) + r] ⊆ Ck ∪ I ′k ⊆ Ck ∪ Ik and f−1[f(Ak+1)−

r, f(Ak+1)−1] ⊆ Dk+1∪I ′′k ⊆ Dk+1∪Ik. Because Ck∩Dk+1 = ∅, at least r−ik colors of
[f(Ak+1)− r, f(Ak+1)−1] are not in [f(Ak)+1, f(Ak)+ r]. Thus f(Ak+1)−f(Ak) ≥
r + (r − ik) + 1 = 2r + 1 − ik for 1 ≤ k ≤ m − 1. Summing up, we get (c):
nspr(G) ≥ f(Am)− f(A1) ≥ (m− 1)(2r + 1)− |I|.

Now consider the case that B′ �= ∅; i.e., there exists some w ∈ B such that wAk �∈
E(Ĝ) for all 1 ≤ k ≤ m. Hence |f(w) − f(Ak)| ≥ r + 1 for all 1 ≤ k ≤ m. Assume
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f(Ap) < f(w) < f(Ap+1) for some 1 ≤ p ≤ m−1. Then f(Ap+1)−f(Ap) ≥ 2r+2, so
I ′p ∩ I ′′p = ∅, implying that ip ≥ i′p + i′′p ≥ (r− cp)

+ +(r−dp+1)
+ = qp + q′p. Replacing

ip ≥ qp + q′p to the last summation in (∗∗), we get |I| ≥ q(Π) + q′p ≥ q(Π) + q′(Π).
This proves (d).

Because f(Ap+1) − f(Ap) ≥ 2r + 2 ≥ 2r + 1 − ip + qp + 1, we have, from the
first inequality, nspr(G) ≥ f(Ap+1) − f(Ap) ≥ 2r + 2. Using the second inequality,
similar to the proof of (c), one can get nspr(G) ≥ (m − 1)(2r + 1) − |I| + qp + 1 ≥
(m− 1)(2r + 1)− |I|+ s(Π) + 1. This proves (e).

In the next result, we complete the solution of nspr(G) for bipartite graphs G =
(A,B, I, E) with |I| = r−2. Let s(G) = min s(Π), where Π runs over all arrangements
of A satisfying Lemma 3.5(b) and (d).

Theorem 3.6. Suppose G = (A,B, I, E) is a bipartite graph with 2 ≤ m = |A| ≤
|B|, 0 ≤ |I| = r − 2, and Ĝ has no P4. Then, nspr(G) <∞ if and only if Ĝ satisfies
Lemma 3.5(a), (b), and (d). In this case,

nspr(G) =


(2r + 1)(m− 1)− r + 2 if B′ = ∅,
2r + 2 if B′ �= ∅ and m = 2,
(2r + 1)(m− 1)− r + s(G) + 3 if B′ �= ∅ and m ≥ 3.

Proof. The necessity follows from Lemma 3.5. For the sufficiency, suppose
Π = (A1, A2, . . . , Am) is an arrangement of A satisfying Lemma 3.5(a), (b), and
(d). Moreover, assume s(Π) = s(G) when B′ �= ∅. By Lemma 3.5(a), any two A-

vertices have disjoint sets of neighbors in Ĝ. Then by Lemma 3.5(b), we can label

the neighbors of Ak in Ĝ by Ck,1, Ck,2, . . . , Ck,ck and Dk,1, Dk,2, . . . , Dk,dk+1
, respec-

tively, for 1 ≤ k ≤ m. In addition, since |I| ≥ ∑m−1
k=1 qk, there exist distinct I-vertices

Ik,1, Ik,2, . . . , Ik,qk for all k.
We shall complete the proof by considering the three cases.
Case 1. B′ = ∅. That is, B is the union of all the C-and D-vertices. It suffices to

find an Nr-coloring of G with span (2r+ 1)(m− 1)− r+ 2. (Then we not only prove
that Nr(G) < ∞ but also confirm that the span is optimal by Lemma 3.5(c).) We

first replace qm−1 by |I| −∑m−2
j=1 qj . Then qm−1 ≥ max{(r− cm−1)

+, (r− dm)+} and

|I| = ∑m−1
j=1 qj . Indeed, letting B represent the C- and D-vertices and I for I-vertices

(without indicating the indices), we can line up all vertices of G as an Hamiltonian
r-path in Gc as

P = A1BB · · ·B︸ ︷︷ ︸
c1

II · · · I︸ ︷︷ ︸
q1

BB · · ·B︸ ︷︷ ︸
d2

A2 · · ·Am−1BB · · ·B︸ ︷︷ ︸
cm−1

II · · · I︸ ︷︷ ︸
qm−1

BB · · ·B︸ ︷︷ ︸
dm

Am.

Note that d1 = cm = 0. Define a coloring on G by the following three steps. (The
idea is to use each I-vertex to reduce the span by 1.)

(1) A-vertices: f(A1) = 0 and f(Ak+1) = f(Ak) + 2r+1− qk for 1 ≤ k ≤ m− 1.
(2) B-vertices: for all 1 ≤ k ≤ m− 1,

f(Ck,j) =

{
f(Ak) + j for 1 ≤ j ≤ r − qk − 1,
f(Ak) + r − qk for r − qk ≤ j ≤ ck,

f(Dk+1,j) =

{
f(Ak) + r + j for 1 ≤ j ≤ r − qk − 1,
f(Ak) + 2r − qk for r − qk ≤ j ≤ dk+1.

(3) I-vertices: f(Ik,j) = f(Ak) + r − qk + j for all qk > 0 and 1 ≤ j ≤ qk.
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One can easily verify that f is an Nr-coloring for G with span (2r+1)(m− 1)− |I| =
(2r + 1)(m− 1)− r + 2.

Case 2. B′ �= ∅ and m = 2. Similar to Case 1, by Lemma 3.5(e), it suffices to
find an Nr-coloring of G with span nspr(G) = 2r+2. Define a coloring by f(A1) = 0,
f(A2) = 2r + 2, and f(z) = r + 1 for all vertices z in B′. Since |I| ≥ q(Π) + q′(Π) =
q1 + q′1 = (r− c1)

+ + (r− d2)
+, there are enough I-vertices to use the colors between

0 and 2r + 2. Thus one can verify that this is an Nr-coloring of G with span 2r + 2.

Case 3. B′ �= ∅ and m ≥ 3. Again, by Lemma 3.5(e), it suffices to find an
Nr-coloring with span (2r + 1)(m− 1) − |I| + s(G) + 1. Suppose s(Π) = qp for some
1 ≤ p ≤ m−1 with q′p ≤ |I|− q(Π). As before, we replace qi by qi + |I|− q(Π)− q′p for
some i �= p. Then |I| = q1+q2+ · · ·+qp−1+(r−cp)++(r−dp+1)

++qp+1+ · · ·+qm−1.
All the C-, D-, and I-vertices are labeled the same as before, except the I-vertices
between Ap and Ap+1 are labeled as I ′p,1, I

′
p,2, . . . , I

′
p,(r−cp)+ , I

′′
p,1, I

′
p,2, . . . , I

′
p,(r−dp+1)+

.

Apply the same three-step coloring method used for the Case 1, except the colors for
the vertices between Ap and Ap+1 are defined by f(I ′p,j) = f(Ap) + r − (r − cp)

+ + j
for 1 ≤ j ≤ (r− cp)+; f(w) = f(Ap)+ r+1 for all w ∈ B′; f(I ′′p,j) = f(Ap)+ r+1+ j
for 1 ≤ j ≤ (r − dp+1)

+; f(Ap+1) = f(Ap) + 2r + 2; and

f(Cp,j) =

{
f(Ap) + j for 1 ≤ j ≤ r − (r − cp)

+ − 1,
f(Ap) + r − (r − cp)

+ for r − (r − cp)
+ ≤ j ≤ cp,

f(Dk,j) =

{
f(Ap) + r + 1 + (r − dp+1)

+ + j for 1 ≤ j ≤ r − (r − dp+1)
+ − 1,

f(Ap) + 2r + 1 for r − (r − dp+1)
+ ≤ j ≤ dp+1.

This gives an Nr-coloring for G with span (2r + 1)(m − 1) − |I| + s(G) + 1 = (2r +
1)(m− 1)− r + s(G) + 3.

Based on Lemma 3.5, using a similar process in the proof of Theorem 3.6, we
can also completely settle the case that I = ∅ and r ≥ 2. In this case, Lemma
3.5(b) means that qk = 0 for all k, or, equivalently, that Ĝ has two A-vertices of
degree at least r and the rest (m− 2) A-vertices of degree at least 2r. Furthermore,
Lemma 3.5(d) holds automatically, and s(Π) = 0. This implies that the lower bound
in Lemma 3.5(e) is simply (m − 1)(2r + 1) + 1. Hence the same labeling procedure
used in Theorem 3.6 gives the following result.

Theorem 3.7. Let G = (A,B, I, E) be a bipartite graph with 2 ≤ m = |A| ≤ |B|,
I = ∅, and Ĝ contains no P4. If r ≥ 2, then nspr(G) <∞ if and only if Lemma 3.5(a)

holds and Ĝ has two A-vertices of degree at least r and the other (m− 2) A-vertices
of degree at least 2r. In this case,

nspr(G) =

{
(2r + 1)(m− 1) if B′ = ∅,
(2r + 1)(m− 1) + 1 if B′ �= ∅.

By Corollary 3.4 and Theorems 3.3 and 3.7, we obtain the complete solutions of
nsp2(G) for bipartite graphs.



NO-HOLE (r + 1)-DISTANT COLORINGS 379

Theorem 3.8. If G = (A,B, I, E) is a bipartite graph with at least one edge and
1 ≤ m = |A| ≤ |B|, then

nsp2(G) =



3 if |I| ≥ 2;

4 if |I| = 1 and E(Ĝ) �= ∅;
5 if |I| = 0 and Ĝ has a P4;

5m− 5 if |I| = 0, B′ = ∅, and Ĝ is a disjoint union of m
stars, centered at A except that two of the stars have
at least 2 edges, each star has at least 4 edges;

5m− 4 same as the above, except B′ �= ∅;
∞ other than any of the above.

Figure 3.3 shows examples of Theorem 3.8.
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Fig. 3.3. Five examples for Theorem 3.8.
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Remark. This article is aimed at computing the values of nspT (G) for bipartite
graphs when T = {0, 1, . . . , r}. Another article by Chang, Juan, and Liu [1] deals
with the values of nspT (G) for unit-interval graphs when T = {0, 1}. The no-hole
T -colorings for some other T -sets and different families of graphs were studied by Liu
and Yeh [13]. It was proved [13] that if T is r-initial or T = [a, b], 1 ≤ a ≤ b, then
for any large n, there exists some graph on n vertices such that nspT (G) equals the
upper bound n− 1.

Acknowledgment. The authors are grateful to the two anonymous referees for
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