Graphs and Combinatorics (1999) 15:295-301
Graphs and
Combinatorics

© Springer-Verlag 1999

T-Colorings and 7-Edge Spans of Graphs*

Shin-Jie Hu, Su-Tzu Juan, and Gerard J. Chang

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050,
Taiwan. e-mail: gjchang@math.nctu.edu.tw

Abstract. Suppose G is a graph and T is a set of non-negative integers that contains 0.
A T-coloring of G is an assignment of a non-negative integer f(x) to each vertex x of G
such that |f(x) — f(»)| ¢ T whenever xy € E(G). The edge span of a T-coloring f is the
maximum value of | f(x) — f(»)| over all edges xy, and the T-edge span of a graph G is the
minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of
the dth power Cnd of the n-cycle C, for T =1{0,1,2,...,k — 1}. In particular, we find the
exact value of the T-edge span of C¢ for n=0 or 1 (mod d + 1), and lower and upper
bounds for other cases.

1. Introduction

T-colorings were introduced by Hale [3] in connection with the channel assignment
problem in communications. In this problem, there are n transmitters xi, xp, ..., X,
situated in a region. We wish to assign to each transmitter x a frequency f(x).
Some of the transmitters interfere because of proximity, meteorological, or other
reasons. To avoid interference, two interfering transmitters must be assigned fre-
quencies such that the absolute difference of their frequencies does not belong to
the forbidden set 7 of non-negative integers and 7 contains 0. The objective is to
make a frequency assignment that is efficient according to certain criteria, while
satisfying the above constraint.

To formulate the channel assignment problem graph-theoretically, we con-
struct a graph G in which V(G) = {x;,x2,...,x,}, and there is an edge between
transmitters x; and x; if and only if they interfere. Given graph G and a set T of
non-negative integers and 7 contains 0, a T-coloring of G is a function f from
V(G) to the set of non-negative integers such that

xy € E(G) implies |f(x)—f(y)[¢T.
For the case when T = {0}, T-coloring is the ordinary vertex coloring.
In channel assignments, the objective is to allocate the channels efficiently.
From the T-coloring standpoint, three criteria are important for measuring the
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efficiency: first, the order of a T-coloring, which is the number of different colors
used in fi second, the span of f, which is the maximum of |f(x) — f(y)| over
all vertices x and y; and third, the edge span of f, which is the maximum of
|f(x) — f(»)| over all edges xy. Given T and G, the T-chromatic number y(G) is
the minimum order of a T-coloring of G, the T-span sp;(G) is the minimum span
of a T-coloring of G, and the T-edge span esp;(G) is the minimum edge span of a
T-coloring of G.

Cozzens and Roberts [1] showed that the 7T-chromatic number y,(G) is equal
to the chromatic number y(G), which is the minimum number of colors needed to
color the vertices of G so that adjacent vertices have different colors. The param-
eter T-span of graphs has been studied extensively; for a good survey, see [6]; for
recent results, see [2, 5, 7]. However, comparing to 7-spans, there are relatively
fewer known results about T-edge spans of graphs, see [1, 4].

Cozzens and Roberts [1] raised the problern of computing 7-edge spans of
non-perfect graphs when 7" = {0, 1,2,. — 1}. Liu [4] studied this problem for
odd cycles. In this article, we con51der ce, the dth power of the n-cycle C,. The
graph C,‘f has the vertex set V(C,f = {vo,v1,...,0,-1} and the edge set

E(CHh= ) {owj:j=i+1,i+2,...,i+d},
0<i<n-—1
where the index j for v; is taken modulo 1. We find the exact value of esp;(C¢) for
n=0or1 (modd+ 1), and lower and upper bounds for other cases.

2. Previous results

In this section, we quote some known results about 7-spans and 7-edge spans,
some of which will be used in Section 3.

The cliqgue number w(G) of G is the maximum order of a clique (complete
graph), a set of pairwise adjacent vertices. A complete graph of order n is denoted
by K,. The n-cycle is the graph C, with vertex set V(C,) = {vo,v1,...,0,—1} and
edge set E(C,) = {vov1, 0102, ..., Uy2Un_1, Uy—10p }. Note that C! is C,.

The following are some known results on 7-spans and 7-edge spans.

Theorem 1. (Cozzens and Roberts [1]) The following statements hold for all graphs
G and sets T.

(1) x(G) =1 <espy(G) < spr(G).
(2) spr(Kug)) < espr(G) < spr(G) < ( (6))-
(3) If Tis (k — 1)-initial, i.e., T ={0,1,...,k — 1} US where S contains no multi-

ple of k, then SPT(G)*SPT( G)) ( ( )= 1).
Theorem 2. (Liu [4]) For any odd cycle C, and T ={0,1,...,k—1},
(n+ 1k

n—1 |

espr(Cy) =

Figure 1 shows an example of C, with T = {0,1,2} for which y;(C;) =
3 <espy(Cy) =4 < spp(Cy) = 6. These values follow from Theorems 1 and 2.
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xr(C7) =3 ; espr(Cr) =4
spr(C7) =6

Fig. 1. C; with T = {0,1,2}

3. Edge spans for powers of n-cycles

This section gives results for 7T-edge spans of C¢ for the (k — 1)-initial set
T={0,1,2,....k—1}. "

We note that C¢ = K, for d > LEJ and espy(K,) = spT(Kn)n: k(n—1).
Therefore, throughout this article we consider C¢ only for d < bJ —1 and
assume n =m(d + 1) +r, where m > 2 and 0 < r < d. Our main results are as
follows. First, we give an upper bound and a lower bound for esp;(C?) (Theorem
4), both of them imply the exact value of esp(C,f ) when r = 0 (Theorem 5). We
then give a better upper bound when ged(n,d + 1) = 1 (Theorem 6) and a better

lower bound when r > 1 (Theorem 7), both of them imply the exact value when
r =1 (Theorem 8).

Lemma 3. If n = m(d + 1) +r withm > 2 and 0 < r < d, then w(C?) = d + 1 and
ay— [ = r
X(C”)_[m—‘_d—i_l—'—[m—"

Proof. 1t is easy to see that o(C?) =d + 1 since d + 1 < gJ and y(C%) > [%1

. . . . . n—i
since any independent set of C,j’ contains at most m vertices. Letting n; = [ p —‘ ,
we have

m—1
n= Zl’l,’.

i=0
Color the n vertices of C% as 1,2,...,n9,1,2,....01, 1,2, ... omay . 1,200 iy
. . . —i - 1 1

This coloring is a proper vertex coloring since each nm : > " Z LA d+ Tt

and so [H—‘ > d + 1. Hence (C%) < [EW O

m m

Theorem 4. If n=m(d+1)+r with m>2 and 0<r<d, then dk <

espp(CY) < spp(CY) = dk + [ﬂ k.

Proof. The theorem follows from Theorem 1 and Lemma 3. O
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Theorem 5. If n = m(d + 1) with m > 2, then esp(C?) = sp;(C¢) = dk.

Proof. The theorem follows from Theorem 4 as r = 0. O

Theorem 6. Suppose n=m(d+1)+r with m>=2 and 0<r<d. If
k

ged(n,d + 1) = 1, then espp(CY) < dk + R”-‘

Proof. Since ged(n,d +1)=1,d+1 is a generator of Z, using modulo n
addition, i.e., ji=i(d+1) (mod n) for 0 <i<n—1 generates each integer
in {0,1,...,n— 1} exactly once. In other words, we can consider V(CY) as
{vj,vj,,...,v;,,}. Note that any m circularly consecutive vertices vj,,,, V., - -,
V.. (with indices a+p considered modulo n) form an independent set in
C¢. Consequently, v;v, is not an edge when 0 <a<b<n-—1 with 1<

min{h —a,n+a—b} <m-—1. ik
Now, consider the function f on V(CY) defined by f(v;) = [—-‘ for 0 <

i<n—1. We claim that f'is a T-coloring. For any edge v;v;, with 0 <a <
b < n—1, according to the preceding discussion, min{b —a,n+a — b} > m, i.e.,
m<b—a<n—m=md+r. Then

bk ak+m—1 1
ol Takl | T =
1) = Sl = | = [
m m bk+m—1 ak _ (md+r)k 1
<—————— < +1-—
m m m m
or
>k,
fl)'“ _fv‘h
)= sdk+rﬂ.
m
Therefore, fis a T-coloring of C¢ and esp;(CY) < dk + {%—‘ ) n

Theorem 7. If n=m(d+ 1) +r with m>2 and 1 <r <d, then esp;(C?) >
k
dk + | —

ol
4 k . .
Proof. Suppose espr(CY) < dk + al 1. Let f be a T-coloring for which

esp7(CY) = max{|f(v;) — f(v;)| : viv; € E(C?)}. Note that the m+1 vertices
Vi(a+1),0 < i < m, are pairwise non-adjacent except for vov,(i+1) e E(CY). Let
&ij = f(via+1)) — f(vj(a+1)) for 0 <i < j < m. Then

m—1 m—1

Eiitl| < Z lei,it1]
i=0 i=0

k< |8()7m| =

. k
and so there exists at least one i such that |g; ;1| > {——‘ In other words, the set
: m

k .
U={i:lein|= {E—‘ and 0 < i < m — 1} is not empty.
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For any i e U, the d + 2 vertices v;, i(d+1) < j < (i+1)(d + 1), are pair-
wise adjacent except that vj(s1) is not adjacent to v(iy1y(4+1). Sort the d + 2 values
f(Uj),i(d+ 1) <j< (i+ 1)(d+ 1), into by <h, < -+ < bd+2. If {b],bd+2} #
{f Witas1))s S (W(ir1y@s1))}, then

d+1
k
esp(CE) > bz = by =3 (byur — b)) > -t [,
=1
a contradiction. Hence, {b;,bs:2} = {f(p,(d“))’f(U(M)(dH))} and
d+1

leivi] = |/ (vasn) = S (Wasn@en)| = D (b1 — b)) = (d + k.

J=1
Also,
bayr — by < esp(CY) < dk + [g—‘ —1,

bay1 — by <esp(CY) < dk + [ﬂ —1,
bis1 —b;i =k for2 <i<dandso, bjr1 —by > (d—1)k.
Then |¢; it1| = baso — b1 < (d+ D)k +2 L%-‘ — 2. In conclusion,
(d+ 1Dk < g < (d+ 1)k+2%} —2 forallieU.
On the other hand, |g; ;41| < [%w — 1 foralli¢ U. Let U be the disjoint union of

U, and U, such that |U;| > |U,| and all ¢; ;41 in U; (or U,) are of the same sign.
For the case |U;| > |U,|, we have

m—1
Z & i+l
i=0
Z leiiv1] — Z leiiv1]| — Z lei, i1l

ie U, iel, i¢U

Ui+ 1)k = o2l (@4 2] = 2) = = o (| 5] < 1)
= (1]~ 1D+ 1+ 0] [ = m) (| ] 1)

st n(} )

o et

a contradiction.

espT(Cf) > |eo,m| =

\Y

Y
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For the case |U;| = |U,|, say U; = {i1,ia,...,i,} for i =1,2. Then

m—1
g ijit+l
i=0

k < |8(),m| =

a

Z(Sl A4 T E2,0,41)

IA

+ Z |&i,it1]

i¢U

< {ueeaf] 2w S]]
=«(fl-2) rer-2a([3] )
=l 1)<

k
Theorem 8. If n = m(d + 1) + 1 with m > 2, then espy(CY) = dk—&—{ —‘

Proof. The theorem follows from Theorems 6 and 7 and the fact that
ged(n,d +1) = 1. O

Note that Theorem 2 is a special case to the above theorem when 7 is odd and

-3
d = 1. For the case where n > 5 is odd and d :nT, we have r =1,m =2, and

C{¢ is isomorphic to the complement C, of C,. Thus, we have the following result.

= -2k
Corollary 9. If n > 5 is odd, then espr(C,) = [L 5 ) —‘
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