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Using Minimal Source Trees for On-Demand
Routing in Ad Hoc Networks
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Abstract—The on-demand routing protocols that have been proposed to
date use either path information (e.g., DSR) or distance information (e.g.,
AODV). We present SOAR, an on-demand link-state protocol based on par-
tial link-state information in which a wireless router communicates to its
neighbors the link states of only those links in its source tree that belong
to the paths it chooses to advertise for reaching destinations with which it
has active flows. SOAR does not require periodic link-state advertisements
when there are no link connectivity changes in the network. Simulation
studies for several scenarios of node mobility and traffic flows reveal that
SOAR performs more efficiently than DSR, which is one of the best per-
forming on-demand routing approaches based on path information.

Keywords—Mobile Networks, Wireless Networks, On-Demand Routing,
Ad-Hoc networks, Link-State Routing

I. I NTRODUCTION

Multihop packet radio networks (or ad-hoc networks) consist
of mobile routers that interconnect attached hosts. These net-
works play an important role in relief scenarios and battlefields,
where there is no base infrastructure. Communication between
notebook or palmtop computers in conference scenarios can also
be achieved using the ad-hoc networks. The topology of such
networks is very dynamic because of host and router mobility,
signal loss, interference, and power outages. The bandwidth
available is also much less compared to wired networks.

To minimize the control overhead, on-demand routing pro-
tocols maintain paths to only those destinations to which data
must be sent and the paths to such destinations need not be op-
timum (e.g., DSR [1], AODV[2], TORA [3], ROAM [4]). The
basic differences among these protocols are how they commu-
nicate information to obtain paths to destinations, how they use
and maintain the information, and the way in which data packets
are routed. All on-demand routing protocols proposed to-date
use flood search messages that either give sources the complete
paths to destinations (e.g., DSR) or provide only the distances
and next-hops to destinations and validate such distances with
sequence numbers (e.g., AODV) or timestamps (e.g., TORA), or
internodal coordination (e.g., ROAM). Interestingly, there have
been no detailed studies of on-demand routing protocols based
on link-state information. Jacquet et. al. [5] present a link state
routing protocol for dense mobile ad-hoc networks called Opti-
mized Link State Routing (OLSR). OLSR is a pro-active routing
protocol where the routers exchange periodic routing messages
and periodic HELLO messages with the neighbors. It uses a
concept of multipoint relays (MPRs), which act as intermediate
routers from source to destinations and works best in dense net-
works. Hu et. al. [6] have proposed caching schemes for DSR
in which paths to destinations are stored in the form of links
for higher efficiency and the links are removed from link caches
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either by time outs or by ROUTE ERROR messages.
Recently, a routing protocol based on partial topology infor-

mation named STAR (source tree adaptive routing [7]) was pro-
posed in which wireless routers communicate to their neighbors
their source trees, i.e., the state of links in the preferred paths
to all destinations. Although STAR has been shown to be as
efficient as such on-demand routing protocols as DSR [7], it re-
quires each node to keep routing information for all network
destinations, which may be undesirable in very large ad-hoc net-
works or networks in which battery life of nodes is at a pre-
mium. The MPDA protocol presented in [8] is also a link-state
protocol based on partial topology propagation, but it focuses
on loop-free multipath construction oriented towards minimum-
delay routing in wired networks.

This paper presents the source-tree on-demand adaptive rout-
ing protocol (SOAR), which is an on-demand routing protocol
based on link-state information. Section II presents a detailed
description of SOAR, in which wireless routers exchange min-
imal source trees, consisting of the state of the links that are in
the paths used by the routers to reach active destinations. Active
destinations are those for which the wireless router is a source
of data packets, a relay, or a possible relay. Minimal source
trees can be updated incrementally or atomically, and updates
to source trees are validated using sequence numbers. A wire-
less router uses its outgoing links and the minimal source trees
received from its neighbors to compute its own source tree us-
ing a local path selection algorithm. Our approach of caching
path information in the form of links is similar to [6], but unlike
Hu’s scheme links are validated in SOAR using sequence num-
bers, because the overhead incurred is very small. Section III
proves that, within a finite amount of time after the occurrence
of the last topology change in the network, SOAR stops trans-
mitting updates and routers have paths to active destinations that
do not involve any loop. Section IV presents a comparative per-
formance study of SOAR and DSR, which has been shown to
require fewer control packets than other on-demand routing pro-
tocols (AODV and TORA) [1], [9]. The simulation results show
that SOAR requires much fewer update packets than DSR, while
providing similar average delays and packet delivery rates. Sec-
tion V presents our conclusions.

II. SOAR DESCRIPTION

A. Overview

To describe SOAR, the topology of the network is modeled
as a directed graph G = (V,E), where V is the set of nodes and
E is the set of edges connecting the nodes. Each node has a
unique identifier, by which routing protocols and other applica-
tions can identify it. Routers are assumed to operate correctly
and information is assumed to be stored without errors.
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Each link has a cost associated with it and it becomes infinite
if the link fails. SOAR does not depend on a neighbor protocol
for monitoring link connectivity with neighbors. SOAR declares
a link as up, when it receives a control packet from a new neigh-
bor. It is assumed either that a link-level protocol can inform
SOAR when data packets cannot be sent along a particular link,
or SOAR can make that determination after a few transmissions
to a neighbor. Control packets are sent unreliably and there may
be packet losses due to changes in link connectivity, interfer-
ence and signal loss. SOAR has been implemented on top of
UDP and IP and has access to all data packets from the network
layer as well as from the upper layers.

SOAR finds paths to destinations in an on-demand basis.
When a router is asked to forward a data packet it forwards it
to the next hop specified in the routing table if the next hop to
the destination is known. Otherwise, the router sends aquery

to its neighbors asking for the link-state information needed to
produce a complete path to the destination. Nodes sendreplies

in response toqueries if they have complete paths to the re-
quested destinations.Updates are exchanged when paths need
to be updated to prevent loops or incorrect packet forwarding
due to link connectivity changes.

All control packets are limited broadcast packets that travel
one hop only and contain link states that belong to theminimal
source trees used by routers to reach destinations. Fig.1 shows
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Fig. 1. Figure showing the minimal tree exchanged by SOAR

theminimalsource tree advertised by a router ( A ) to its neigh-
bors. In the example, router A knows about the links to nodes
B,C,....,M and it has active flows with destinationsC, F , I and
M . The source tree reported by routerA to its neighbors is a
subset of the source tree it maintains; in the example of Fig.1
router A does not report linksI � J , H �K, K � L, D � G

andC � E, and it advertises all the other links, shown within
the curved boundary. SOAR uses hop-by-hop packet forward-
ing and a data packet specifies the path traversed, rather than the
path to be traversed.

In SOAR, each router maintains a sequence number for each
known destination. A router increments its own sequence num-
ber when any of its adjacent links go down or is brought up. All
the outgoing links of the router are identified by the same se-
quence number. If the partial topology table at a router contains
links with the same head node but different sequence numbers,
then the router, while sending control packets keeps the links
with the highest sequence number and removes the links with
lower sequence numbers. This ensures that routers in the net-
work do not report outdated link-state information.

B. Information Maintained in SOAR

A router maintains a partial topology tableTi, a source tree
STi, a routing tableRTi and theminimaltreeST x

i , reported by
each neighborx�Ni, whereNi is the list of neighbors ofi. A
router also keeps a query table, a data buffer and a destination
table (Di) containing the highest node sequence number it has
heard for each destination.

The routing table contains entries for those destinations which
are reachable according to the information available at the
router. Each entry in the routing table consists of the destina-
tion ID, the next hop for the destination and the cost of the path
to the destination.
STi is the source tree used by routeri to reach any destina-

tion whileST x
i is theminimalsource tree of neighborx adver-

tised to routeri. Though each router maintains a source tree,
while sending control packets it determines itsminimalsource
tree and reports that to its neighbors. Each link ini’s topology
table is identified by a tuple(u; v; l; s) whereu is the head,v is
the tail, l is the cost ands is the sequence number of the link.
Eachnode has a sequence number, and every time there is a link
up or link down, the node increments its sequence number and
it changes the value ofs of each outgoing link to this new se-
quence number. When routeri learns the same link(u; v) from
several neighbors, it trusts the entry with the highest sequence
number. If two neighbors report the same sequence number for
the same link, then the link information with the lower cost will
be trusted.

The data buffer is a queue that holds data packets waiting for
routes to be discovered. The query table tracks the queries sent
for each destination. For each destination, the query table logs
the time when the last maximum-hop query was sent, the last
time a zero-hop query was sent, and the last time a query was
received.

C. Information Exchanged in SOAR

SOAR exchanges three types of control packets:query,
reply andupdate. Query packets are sent when a node does
not have a route to a destination for which it has a data packet to
send.Reply packets are sent by a node in response toQueries

if it has a path to the destination queried. A node forwards a
query to its neighbors if it does not have a route to the destina-
tion for which it receives aquery from a neighbor.Update
packets are generated if the distance for any active destina-
tion increases after the reception of a control packet or after a
link-connectivity change. The information transfered in con-
trol packets between nodes running SOAR is theminimalsource
tree. We denote byimportantnodes those nodes for which the
router acts as a relay or a sender of data packets or those nodes
which the router uses as a relay for data delivery. Theimpor-
tantnodes of a routeri are determined by doing a path traversal
throughSTi, in an order similar to the post-order walk in a bi-
nary tree. It should be noted that each node computes its own
shortest path tree, but reports to its neighbors theminimalsource
tree containing links that are used to reach itsimportantnodes.
However, a router can choose to report the entire source tree to
its neighbors instead of reportingminimalsource trees.

Control packets are broadcast and are sent unreliably. Be-
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cause the loss of control packets can lead to wrong path infor-
mation and loop formations, the path traced by a particular data
packet is kept in its header. When a node receives a data packet
to forward, it reads the path traversed by the packet in the packet
header and checks whether forwarding it to the successor, spec-
ified in the routing table leads to a loop. If it detects that the
packet can go in a loop, it sends out anupdate and determines
if any of its neighbors has an alternate path to the destination that
does not have any of the nodes specified in the path traversed by
the packet. A router also sends anupdate if it receives a data
packet for forwarding and it does not have a route to the desti-
nation. This is to ensure that its neighbors having an outdated
view of itsminimalsource tree is updated.

D. Operation of SOAR

Arrival of Data Packets: When a data packet arrives from
the application layer and the router has a valid path to the des-
tination, it immediately forwards the packet. Otherwise, it ini-
tiates a route discovery process by sending a non-propagating
query and keeps the data packet in itsdata buffer. If the data
packet arrives from the network, and the router does not have a
valid path to the destination, or finds that the packet can go in
a loop if forwarded as indicated by the routing table, the packet
is discarded and anupdate is sent to all neighbors. To prevent
anupdate to be sent for each data packet received from a burst
of data packets with no next hop or headed for a potential loop,
aMinimum Update Timeis enforced in the transmission of con-
secutive updates. This time spacing of updates is maintained
only for thoseupdates generated in response to information ob-
tained through data packets.

While forwarding a data packet, if the router finds that the
next hop neighbor in the path to the destination is no longer
a neighbor, it removes the entries corresponding to that non-
existent neighbor from its database. It then recomputes its rout-
ing table and tries to find an alternate path to the destination. If
there is none, the packet is discarded if it came from the net-
work; otherwise, it is kept in the data buffer while a route dis-
covery process is started.

Two kinds of queries are sent: non-propagatingqueries
which are meant for neighbors only and propagatingqueries

which travel MAX HOPS hops. This is to prevent unneces-
sary flooding when the neighbors have a path to the required
destination. Two path discovery processes are separated by
query send timeout seconds. Non propagatingqueries are
sent at the start of the path discovery process. If none of the
neighbors send anyreply, propagatingqueries are sent. If these
queries do not yield any response, then the route discovery pro-
cess is restarted by sending a non-propagatingquery. Each time
a response is not obtained during a a route discovery cycle the
value ofquery send timeout is doubled till a pre-defined num-
ber of attempts have been made, after which it is kept constant.

Arrival of Control Packets: All control packets are limited
broadcast packets, but thesrc anddst are included to determine
how to forward the control packets.Queries havesrc set to
the source of thequery anddst set to destination queried. Any
node who sends areply interchanges thesrc anddst field, as
if the dst replies tosrc, though some intermediate node may
reply. Forupdates thedst field is set toBDCASTADDR. When

a router receives the first control packet from a node that is not
in the neighbor list, it assumes the presence of a new neighbor
within its range.

A query for a particular destination is forwarded by a receiver
if it does not have a path todst, and if thequery has not traversed
the maximum number of hops specified in thatquery and if the
difference between the present time and the time when the query
for dstwas last received is greater thanquery receive timeout.
The last condition is imposed to limit the number ofqueries
in the network sent for a particular destination and originated
from different sources. After receiving aquery, a router marks
src as important, so that it can maintain the correct path to the
src, which it needs while propagating back thereplies. While
forwarding replies, the src, which was thedst in query, is
marked asimportant. A node sends areply when it has a path
to the destination queried. Because SOAR does not maintain
up-to-date paths to all destinations, it may happen that the path
advertised in areply is wrong. The sender or relay can realize
that the path is wrong only when data packets start flowing along
the path. Because that can add to some loss of data packets,
a node sends areply about a destination if it determines that
the links in the path to the destination form part of itsminimal
source tree.

A node forwards areply packet, if it has a path to thedstof
the reply, has a new route to thesrc of the packet (this is to
prevent multiple replies), and it is a node in the path from the
source to the destination (this prevents sending replies to that
part of the network, where thisreply is not asked for). If the
node is not required to forward anyreply, updates are sent if
the distance to anyimportantdestination increases.

Each control packet contains several link-state-updates
(LSUs) and each LSU is a tuple,(u; v; l; v:seq no), where
v:seq no indicates the sequence number of the tail (v) of the
link (u; v) 1. The sequence number of the sender is kept in the
SOAR header as a separate field. Every time a control packet
is received, the sequence number for each known nodej is up-
dated to the highest sequence number heard forj; l refers to
the cost of the link. The neighbor’sminimalsource tree and the
partial topology table are updated using the information in valid
LSUs in the control packet. A path selection algorithm (Di-
jkstra’s SPF, Bellman-Ford) can be run on the partial topology
table to determine the source tree and modify the routing table.
An update is sent if according to the source tree there is an in-
crease of distance to anyimportantdestination. In addition if
some new destinations are obtained, packets waiting in the data
buffer for the path to that destination, are sent.

Path selection Algorithms like Bellman-Ford or Dijkstra’s
SPF compute the shortest path in a graph from a source (s) to
any other destination. Due to changing network conditions a
situation may arise where the links in the shortest path to a par-
ticular destination (t) through a neighbor (n) may not have been
learnt fromn itself. In such a scenario, data packets if forwarded
alongn may be lost andupdates generated byn may not im-
prove the condition. To remedy this situation, the path selection
algorithm needs to be modified to ensure that the links in the an-
ticipated path froms to t throughn have been advertised byn,

1Link (u; v) implies the directed link fromu to v while Link (v; u) implies
the directed link fromv to u.
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itself. This new set of path selction algorithms, unlike conven-
tional shortest path algorithms that remember only the shortest
path in each iteration, remembers all the paths that have been
encountered while visiting a node and the information about the
entire set of paths is passed to all its adjacent nodes for their
individual computations.

A router maintains a distance tableDi where each entry is
of the form (j, last heardj ,seq noj) andlast heardj refers to
the time when the router has last seen a packet for destinationj.
When the difference between the present time andlast heardj
is greater thanrefreshingtime, the router is not interested in re-
porting routes forj, unless: (a) j is used as a relay for any
other nodek, and(b) the difference between present time and
last heardk is less thanrefreshingtime. By the term “marking
a node important” we mean thatlast heardj is updated to the
present time.

To ensure that routers use up-to-date link state information to
construct their source trees, a router sends update forimportant
nodes in its source tree when their associated sequence number
must be updated locally or at a given neighbor. When a router
receives an LSU that increases the sequence number of any of its
importantnodes, it sends anupdate to all its neighbors to prop-
agate the updated sequence number for suchimportantnodes.
After several of these inter-nodal communications, the estab-
lishment of the same sequence number for eachimportantnode
is referred to as thesynchronizationof the node sequence num-
ber. Before advertising theminimalsource tree to its neighbors,
a router ensures that none of the advertised links to its neigh-
bors has a sequence number lower than the sequence number
advertised for the head of those links.

There are two simple ways in which roll-over of sequence
numbers can be supported in SOAR. In one approach, an aging
field is used in addition to the sequence number of an LSU. The
largest possible sequence number is sent with a 0 age and each
node is forced to delete the link from its tables and propagate
such an LSU; furthermore after establishing a new link with a
new neighbor, a node sends to its neighbor the last sequence
number for the neighbor, so that the neighbor can start using a
sequence number larger than such a value.

Another approach consists of using a timestamp together with
the sequence number. The timestamp is maintained externally to
the algorithm, and eliminates the need for resetting the sequence
number, because the timestamp increases monotonically. For
simplicity, in the rest of this description, we assume that the sec-
ond scheme is used but omit the treatment of sequence number
reuse in the proofs of correctness.

When a node receives the newminimal source tree from its
neighbor, it updates the neighbor’s entries in the database and
its partial topology table. This process is illustrated using Fig.
2. For simplicity, assume that all the nodes have packets for
every other node and so every other node isimportantfor each
node. Also assume that the network has converged to the same
sequence number for each node, as indicated in Fig. 2. Here we
will show how the partial topology table ata gets modified after
link (b; c) fails. When link (b; c) goes down,b increments its se-
quence number to 35. The path toc breaks atb and so it sends an
update, reporting its newminimalsource tree. Nodea receives
the update and modifies the entries ofb. No update has yet

reached fromf and so theminimalsource tree off ata remains
unchanged. The links deleted from the oldminimalsource tree
of b at a are (b; c), (c; d), (c; e). Links (c; d) and (c; e) do not
appear in theminimalsource tree off ; These links are deleted
from the partial topology table ata. The node sequence number
reported byb for itself is 35 and the node does not advertise link
(b; c). Because every node must be using the shortest path to any
destination, the only reasonb has stopped using the link (b; c),
is that (b; c) has failed or increased in cost orb does not use it,
because there is an alternate lower cost path. Link (b; c) adver-
tised byf has sequence number 34< 35. So as indicated in
Fig.2, nodea marks link (b; c) to be of infinite cost and having a
sequence number of 35. The reason for setting the cost to infin-
ity is to stop using the link as the neighbor has already stopped
using it. This technique helps to inform routers that a link is no
longer used for data delivery, without the explicit notification of
the deletion of the link from the source tree.

At each event, SOAR needs multiple search of the database,
the computational complexity of which has been greatly reduced
by using hash tables. The most computationally intensive oper-
ations turn out to be the implementation of path selection al-
gorithm (for Bellman-Ford, it is O(N:E)) and the function that
ensures that links advertised for the same head node have same
sequence number (O(Nn)), whenN is the number of nodes in
the graph andn is the number of neighbors andE is the number
of edges.

Buffer Timer: The buffer timer is set whenever there is a
packet in buffer. When it times out, the packets waiting in the
buffer are checked to see whether a new query has to be made
for any destination. If there is one,query is sent and the buffer
timer is reset. If there is no packet in the buffer, the buffer timer
is not started to prevent unnecessary interrupts.

Update Timer: The value of this Timer is referred to asup-
date timeoutin Table III. On reception of a control packet, an
updatemay become necessary for achieving synchronization of
sequence numbers ofimportant nodes. The node waits forup-
date timeoutto allow for some time forupdates to arrive from
other neighbors, which can have data for the required synchro-
nization.

III. C ORRECTNESS OFSOAR

This section addresses the correctness of SOAR. To simplify
the proof, we assume that the link layer can inform SOAR about
link failure within a finite time after the link fails, and that con-
trol packets are exchanged reliably. Later on we will show that
SOAR is still correct when control packets are exchanged un-
reliably, because of the steps taken by SOAR to rectify wrong
routing information. We also assume that SOAR achieves cor-
rect reset of sequence numbers.

Theorem 1:Following a link cost change, there can only be
a finite number ofupdates generated for that change.

Proof: In an on-demand routing protocol as the nodes
do not maintain up-to-date information about all links, it is not
possible to say how longupdates will be generated after a link
status change. So proving that a finite number of messages are
produced for a link cost change suffices.

Suppose that a link cost change has occurred att+0 and that
there is no further change in the status of that link after that
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Fig. 2. Example showing how Link State Information is exchanged and updated in SOAR

time. A node increments its sequence number upon undergoing
a link cost change and assigns that value to all its outgoing links.
If an outgoing link of a node decreases in cost, the node will not
generate anupdate, because it does not lead to any increase in
cost for any destination. The head of the link does not send
an update if a link increases in cost and the path cost to any
importantdestination remains the same. If the head of the link
does not generate anyupdate, the theorem is proven.

Let us now prove the theorem for the case in which anupdate

is generated by the head node due to a link cost increase. After
t+0 , updates can first be generated for (u; v) by the headu of
a link (u; v), advertising a higher sequence number if the path
to anyimportantdestination increases due to a cost increase or
failure of link (u; v). A node that receives anupdate, processes
it within a finite time. It sends anupdate if the path to anyim-
portant destination increases or if it needs to achievesynchro-
nization, otherwise noupdate is sent. Equivalently, we can say
that a node sends anupdate only if it experiences an increase in
the sequence number for some nodes.

If we can prove that a node can produce at most oneupdate

for each link cost increase, the theorem is proved. This is be-
cause we have a network consisting of finite nodes and every
node produces at most oneupdate for a link cost change and so
we will have a finite number ofupdate messages for each link
cost increase. This can be shown by contradiction.

Let us assume that a nodex sends a secondupdate for the
cost change of link (i; j), which can only be possible if it did not
have the highest sequence number for nodei before the event
that caused theupdate and after it has sent theupdate it has the
highest sequence number fori. Becausex has already obtained
the highest sequence number for nodei, because it has generated
the firstupdate for i, the secondupdate can only be sent ifi has
increased its sequence number aftert+0 , which implies that there
is another link cost change aftert+0 . However, this contradicts
the assumption made for the proof. So for one link cost change,

any node can produce at most a single update.
Theorem 2:Within a finite time after the failure of a link (i; j)

in the network at timet+0 , all routers using link (i; j) at timet0
stop assuming that link (i; j) exists and start finding alternate
paths without link (i; j).

Proof: Suppose that there is a link failure at timet+0 and
there is no link change aftert+

0
. Let (i; j) be the link that fails.

We have to prove that all routers using link (i; j) for data trans-
fer at timet0 start looking for alternate paths without link (i; j)
within a finite time aftert+0 .

The link layer informs SOAR within a finite time that a link
has gone down. If routeri is not using link (i; j) to reachj
at t0, then none of the routers would be using link(i; j) at t0;
Therefore, noupdate is produced ati as link (i; j) fails. Sup-
pose routeri is using link (i; j) for some active destinationk and
link (i; j) fails. Then routeri will have a data packet to transfer
over link (i; j) within a finite time after link failure, and SOAR
will then find that the link has gone down and the router will in-
crease its sequence number, because there is a link connectivity
change.

If k is an active destination and if any router is using link (i; j)
to reachk, then it generatesupdates when the cost of the path
to k increases. Accordingly a node, that isn hops away from
the head of the link (i; j): (a) processes theupdate, because
it contains new sequence number fori (or processes link level
information about link failure ifn = 0); (b) stops using link
(i; j); and(c) either sends anupdate if the path tok increases on
receiving the link failure information or remains silent if it has
an alternate path of equal distance to the destinationk. There
can be no alternate path tok of lower distance after receiving
the link failure information.

Accordingly, anupdate containing link failure information
propagates up the tree rooted ati (Fig. 3) until either:
� It reaches a nodeX where noupdate is required because the
node has found an equal cost alternate path, in which case no
node upstream ofX knows about the failure of link (i; j) and
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continues to useX as the next hop fork. SinceX is not using
link (i; j) the upstream node which still usesX , as next hop,
effectively does not use (i; j).
� It reaches a node that is not using link (i; j) to reach destina-
tions with which it has active flows.
� It reaches a node which has already updated the highest se-
quence number fori.
In all the above cases no furtherupdates would be sent.

Because the link layer can detect a link failure within a fi-
nite time and a node can process a link failure information from
anupdate or link-layer indication within a finite time and the
tree rooted ati is finite, it follows that within a finite time, all
routers using link (i; j) at t0 will not loose any more data packet
thinking that link (i; j) exists. Using the same method, it can

x
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���
���

��
��
��
��

��
��
��
��

i

j

a b c

Fig. 3. Link failure information propagation in SOAR: White nodes have active
flows with j (herek = j). Black Nodes do not care about paths forj.

be shown that if the link cost increases and the head of the link
prefers to use different paths, all relevant nodes would also try
to determine alternate paths within a finite time.

Lemma 1: If at time t0 a node chooses a path for destination
k, and the path is incorrect then data packets fork will stop
traversing along that path within a finite time.

Proof: Suppose that nodes chooses a path fork and within
a finite time starts forwarding packets along that path. Because
each node, that is in the path froms to k receives a packet fork,
it marksk asimportant. When data packets are forwarded along
the path, they will either reach a node (sn), at a distance of n
hops fromswhich has either a correct path tok or has no correct
path tok. If the first condition is satisfied then the Theorem
is proved because no correction of the path is necessary. For
the second condition the problem atsn becomes similar to the
problem ats, which implies a recursion. Because the network
is finite, after the data packet has traversed a finite number of
hops, a nodesn that isn hops away froms, either selects a
nodes1 with no path to the destination or reaches a nodesn+1
whose next hop fork is an already visited nodesi (i <= n). In
the first cases1 sends anupdate advertising a higher sequence
number for the head node of the link, whichsn still thinks exists.
Nodesn processes theupdate within a finite time, and finds
that its original path is incorrect and in turn sends anupdate,
advertising a higher sequence number for the head node of the
link, which sn�1 still thinks exists. Accordinglys will rectify

its path and the data stops flowing along the path.
We now show why data packets for a certain destinationk

will not go in a loop for an infinite time. LetCx(y) be the cost
of the path tok at nodex using link (y; k). Let us assume that
a; b; c; d; e; f andg are involved in a loop (Fig.4). Because the
downstream nodes always have a lower distance to the desti-
nations, we haveCa(x1) > Cb(x2) > ::::: > Cf (x6). Now
let us assume thatg choosesa as the next hop and uses link
(x7; k). SoCf (x6) > Cg(x7) > Ca(x7), which implies that
Ca(x1) > Ca(x7), that is,a has selected a path of higher dis-
tance, in which casea is supposed to send anupdate. Using
a similar argument we can show thatg’s path also increases, in
which case it sends anupdate and the loop will break by back-
ward propagation.

e

c

d

x6

x5

x4

x3

x2

x1

x7

f

b

a

g

Fig. 4. Figure to depict how SOAR does not form permanent loops

If the updates are unreliable, then it may have happened that
theupdate of a did not reachg. In that case a loop can persist.
However SOAR sendsupdate if the packet is found to traverse
in a loop, in which caseg would send anupdate and this breaks
the loop.

Lemma 2: If a node does not have a path tok and has a data
packet fork, it obtains a correct path tok, if there exists any,
within a finite time after sendingquery.

Proof: A router s initiates a route discovery process by
sending a non-propagatingquery. If none of the neighbors has
any path, a propagatingquery is sent which traverses multiple
hops. When a router receives aquery for k, it markss as im-
portantand hence reports the path tos in its control packets.2

Hence, every node that forwards thequery knows how to for-
ward thereply back tos. Because the network is of finite size
and is connected, at least one node (i.e. the head of the node
reachingk) should be able to send areply. Accordingly areply
will be sent for thisquery within a finite time by a node that
has a path tok, andk is importantto that node or hask as the
end node in its outgoing link. All the intermediate nodes who
have forwarded thequery know the path tos, and thereply
propagates back tos within a finite time. When thereply prop-
agates back to the sender, all the routers on the way marksk as
important, and hence thereplies contain the path tok.

For simplicity of the proof, we assumed that areply can only
be sent by a node fork, if it has a path tok andk is animportant
node or hask as the end node in its outgoing link. The proof
is still valid if a node sends in itsreply an old path. This will

2A node stops considerings beingimportant, if it has not received any packet
for s for refreshingtimeafter marking itimportant.
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make the data packet flow along the wrong path for some time,
but due to Lemma 1, the error would be detected within a finite
time and in the worst case anotherquery has to be sent.

Theorem 3:If a path to a node breaks due to a link failure
and there exists an alternate path, SOAR finds that path within a
finite time.

Proof: From Theorem 2, we have that all nodes would
stop using a failed link, except those whose downstream neigh-
bors have not experienced a path increase. Therefore all these
downstream nodes have either selected a new path tok or do not
have a path tok. By Lemma 1 any node that needs to send data
along some new path, can detect within a finite time whether
that path is correct. In the worst case when there is no alternate
path, a route discovery is initiated and we know from Lemma
2 that, within a finite time, areply must come if there exists at
least a single path.

Theorem 4:If a node becomes disconnected at timet+0 , every
node that considered that node to beimportantat t0 < t+0 , will
have no path to it within a finite time.

Proof: Each node failure can be assumed to be equivalent
to multiple link failures. Therefore using Theorem 2 and Lemma
1, we can say that after a node failure every node wishing to
reach the failed node will have no path.

The above theorems are also valid under the assumption that
the control packets are sent unreliably. This is because due to
loss of control packets, data packets can reach a node who either
detects a loop or finds no path to the destination. Under both
the cases, anupdate would be generated and the network will
recover within a finite time.

IV. PERFORMANCEEVALUATION

We ran a number of simulation experiments on a 20-node net-
work under varying host mobility and network traffic to test the
average performance of SOAR with respect to DSR. Both DSR
and SOAR are implemented inCPT , which is a C++ based
toolkit that provides a wireless protocol stack and extensive fea-
tures for accurately simulating the physical aspects of a wireless
multi-hop network.3 The stack uses IP as the network protocol.
The routing protocols directly use UDP to transfer packets. The
link layer implements a medium access protocol very similar to
the IEEE 802.11 standard [10] and the physical layer is based on
a direct sequence spread spectrum radio with a link bandwidth
of 1 Mbit/sec. To run DSR in CPT, we ported the DSR code
available in thens2 wireless release [11]. There are two dif-
ferences in our DSR implementation as compared to the imple-
mentation used in [12]. First, we do not use thepromiscuous
mode in DSR or SOAR. Besides introducing security problems,
this feature cannot be supported in any IP stack where the rout-
ing protocol is in the application layer and the MAC protocol
uses multiple channels to transmit data. Second, the routing
protocol in our stack does not have access to the MAC and link
queues. Accordingly, packets, once scheduled over a link can-
not be rescheduled if the link fails. Because both SOAR and
DSR would benefit equally from such features, our comparative
analysis is still valid.

3We thank NOKIA Wireless Routers for providing CPT.

A. Mobility Pattern and Traffic Flows

We have used the “random waypoint” model [12]. In this
model, each node is at a random point at the start of the simu-
lation and afterpause timeseconds selects a random destination
and moves to that destination at 20 m/s for a period of time uni-
formly distributed between 5 and 11 seconds. Upon reaching
the destination, the node pauses again forpause timeseconds,
chooses another destination, and proceeds there. We used the
speed of 20m/s as it has been used in simulations in previous
work [12], [13]. Two nodes can hear each other if the attenua-
tion value of the link between them is such that packets can be
exchanged with a probabilityp, wherep > 0. We use widely
varying pause times: 0, 15, 30, 45, 60, 120, 300, 600 and 900
seconds. High mobility scenarios are tested with higher gran-
ularity than the low mobility scenarios with the basic aim of
finding how the routing protocols impart extra overhead under
rapidly changing network conditions than under almost static
network conditions.

We have 20 nodes moving over a flat space of dimensions
(5.7miles X 7.7miles) and initially randomly distributed with a
density of approximately 0.3 node per square mile. During the
simulations most of the routes consist of 2-4 hops, with each
node having an average connectivity to about 30% of the to-
tal nodes. We have tested scenarios with the number of traffic
flows as 4, 16, and 32. In the simulation with 4 flows, we have
4 sources with one destination each, while in the simulations
greater than 4 flows, we have 8 sources with each source having
2 and 4 destinations. The varying number of flows are used as
an attempt to capture most of the realistic scenarios for ad-hoc
networks. It has been shown that depending on the scenarios,
the number of flows in the network can widely vary[13]. Each
flow is a peer-to-peer constant bit rate (CBR) flow and the data
packet size is kept constant at 64 bytes. The flows start randomly
from 20 to 250 seconds and each flow continues for 200 seconds
and after the termination of the flow, within 1 sec, the source
randomly chooses another destination and starts another flow,
which again lasts for another 200 seconds. Hence throughout
the simulation, at any point of time after all flows have started,
the number of flows remains constant. In previous studies [12],
[9], the flows start during the initial part of the simulation and
stay throughout the simulation, which almost divides the entire
simulation time into two separate phases : path discovery dur-
ing the initial stage and path maintenance at the later stages. In
order to simulate most realistic scenarios where flows can start
and end randomly, we have used the traffic model mentioned
above. The total load on the network is kept constant at 31 data
packets/second. We have kept the load small with the aim of not
creating congestion with our data packets, as our idea is to test
how routing protocols react to changes in the network topology
while delivering packets to their destinations. When the number
of flows increases, the data rate of the flows decreases to achieve
constant workload on the network.

B. Metrics used

In comparing the two protocols, we use the following perfor-
mance metrics:
� Packet delivery ratio: The ratio between the number of pack-
ets sent out by the sender application and the number of packets
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correctly received by the corresponding peer application.
� Control Packet Overhead: The total number of control pack-
ets sent out during the simulation. Each broadcast packet is
counted as a single packet. Low control packet overhead is de-
sirable in low-bandwidth wireless environments.
� Average Hop Count: The average number of hops the data
packet took from the sender to the receiver during one run of
simulation. Shorter hop count implies that the routing protocol
is using shorter paths to the destinations, thereby utilizing more
efficiently the network resources.
� Average end-to-end Delay: The end-to-end delay implies the
delay a packet suffers between leaving the sender application
and arriving at the receiver application. This includes delays
caused by route discovery latency at SOAR, delay due to waiting
at IP and MAC layers and propagation delays.

C. Results

TABLE I

L INK CONNECTIVITY CHANGES DURING900SECS OF SIMULATION FOR A

20 NODE NETWORK

Pause Connectivity
Time Changes

0 695
15 257
30 170
45 140
60 126
120 102
300 80
600 72
900 72

Table I shows the number of link connectivity changes that
occur during different host mobility patterns. Every time a link
goes up or down, it is treated as one link connectivity change.
So all the changes (72) that happen duringpause time900 secs
is due to formation of initial topology while any other changes
in link connectivity that occur for lower values ofpause time, is
due to host mobility.

TABLE II

CONSTANTS USED INDSRSIMULATION

Time between Route Requests 500
(exponentially backed off) (ms)
Size of source route header carrying 4n+4
carryingn addresses (bytes)
Timeout for Ring 0 search (ms) 30
Time to hold packets awaiting routes (s) 30
Max number of pending packets 50

Tables II and III show the constants used for DSR and SOAR
during the simulation. For SOAR, the value ofMinimum update
time is chosen such that a sufficient amount of time is given for
the network to recover from the wrong information without in-
troducing moreupdate packets. This value should not be kept

so high that during loss ofupdate packets, recovery takes a long
time. Theupdate timeouthas been kept to a smaller value than
Minimum update time, such that a node sends anupdate quickly
beforeMinimum update timeexpires. Therefreshingtimevalue
has been chosen to make a trade off between overhead of flood-
search messages and maintaining up-to-date paths to all desti-
nations. This value has been found to be most suitable for this
scenario but in general, this value may not be the best under
all circumstances. The values of other constants are chosen to
match those used in the literature ([12], [13]).

TABLE III

CONSTANTS USED INSOARSIMULATION

query send timeout 500
(exponentially backed off) (ms)
Zero query send timeout (ms) 30
Time to hold packets awaiting routes (s)30
Max number of pending packets 50
query receive timeout (s) 4.5
Update Timeout (s) 2
Minimum Update Time (s) 3
MAX HOPS 17
refreshingtime (s) 60

Figures 5, 6, 7 give a comparative performance of SOAR and
DSR under three scenarios, where the number of flows is 4, 16
and 32, respectively. We see that the highest number of pack-
ets are delivered as the networks become less mobile. This is
expected, because all packets meant for a neighbor, are dropped
after link failures and link failures occur less frequently when
the nodes are less mobile. A considerable performance improve-
ment can be achieved if the MAC layer, while communicating
with SOAR, can reschedule packets along some alternate links.
In our simulations we found that large number of packets got
dropped at the routing layer when the network was getting par-
titioned, due to the unavailability of routes to destinations. We
also see that there is an increase in the number of routing pack-
ets for both SOAR and DSR when the number of flows increases
(Figs. 5.a, 6.a, 7.a). This is expected in on-demand routing pro-
tocols, because the number of routes that a node is required to
maintain increases with the number of flows.

We observe from Figure 5 that the number of control packets
exchanged in SOAR is almost similar to DSR when the number
of flows is very small (4), compared to the number of nodes in
the network. However as the number of flows increases, SOAR
scales better than DSR (Fig.6, 7). This is because each node
in DSR is required to communicate with more nodes when the
number of flows increases, and, unlike DSR, SOAR utilizes the
redundancy in theminimalsource trees exchanged to reduce the
number of flood search messages. Flood search messages are
expensive as the entire network is flooded for routes in many sit-
uations and eachquery can produce multiple replies. As SOAR
exchanges control packets of bigger size, total byte usage has
been found to be 2-3 times more in SOAR compared to DSR. (A
reduction in the size of control packets of SOAR can be achieved
by representing the advertised minimal source trees in the form
of a list of paths). However, the cost for gaining access to the
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Fig. 5. Simulation results for the 20node Network with 4 flows
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Fig. 6. Simulation results for the 20node Network with 16 flows

channel is constant with MAC protocols ([14],[15]) similar to
IEEE802.11 and looking at byte overhead is not realistic. If the
MAC layer allowed for transmission of reliable updates with
no retransmission overhead, ([16], [17]), then only incremental
changes to theminimal source tree can be exchanged, thereby
reducing the control packet sizes of SOAR.

We observe from Figures 5.b, 6.b, and 7.b that the percent-
age of received packets is almost the same when the number of
flows is 4. However when the number of flows increases, SOAR
delivers many more data packets than DSR. One of the reasons
for this difference is that DSR drops more packets due to the
unavailability of buffer space. This is because, unlike SOAR,
when the number of flows is high, DSR sends morequeries

while more data packets sit in the buffer waiting for their routes

to be discovered.

The average number of hops traversed in SOAR (Figs 5.d, 6.d,
7.d) is less than or equal to DSR in most of the situations. Part of
the reason for the differences is SOAR, while transferring infor-
mation about some path cost increase, can indicate shortening of
distance for certain other nodes, which can belong to the same
branch as the node whose distance has increased (as it happens
in DSR) but also in some other branches of the tree. In [1] a
method has been suggested to ensure the use of shortest paths in
DSR, but that needs the router to usepromiscuousmodes.

The average delay experienced by the data packets is higher
for DSR than in SOAR when the number of flows is 4 and 16.
This is because DSR waits more in the data buffer while the
paths are discovered. However when the number of flows is
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Fig. 7. Simulation results for the 20node Network with 32 flows

32, DSR delivers less data packets than SOAR, and as the those
data packets are mainly for nearer destinations, delay suffered
by data packets in SOAR is higher.

V. CONCLUSIONS

We have presented SOAR, the first link state on-demand rout-
ing protocol that is suitable for ad-hoc networks. The simulation
experiments we carried out show that SOAR incurs much less
overhead than DSR under all scenarios, ranging from high mo-
bility to low mobility. Given that DSR has been shown to require
less control traffic than AODV and other protocols, we conjec-
ture that SOAR is one of the most bandwidth-efficient routing
protocols for ad hoc networks. SOAR achieves this by commu-
nicating to its neighbors the link states of only those links that
belong to the paths it chooses to advertise for reaching destina-
tions with which it has active flows, by allowing paths to deviate
from optimal routes, and by sending updates only when the path
increases, while not creating permanent loops.
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