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Abstract 
In this paper, a flexible bandwidth management scheme 
namely Bandwidth-based Polling (BBP) for Bluetooth is 
proposed. A framing structure of time is defined in BBP, 
and the master allocates proper number of slots for each 
active slave in a frame. Moreover, BBP allows the master 
to poll a slave more than once in a time frame to achieve 
high flexibility for bandwidth allocation. Calculation of 
the payload type as well as the polling time in a frame for 
a slave with bandwidth requirement is presented in the 
paper. Actions of the master and the slave for supporting 
BBP are also presented in the paper. Simulation results 
have shown that a good performance and flexibility of 
bandwidth allocation can be achieved by BBP. 
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1.  Introduction 
Bluetooth [1, 2] is an emerging technology of ad hoc 
networking that provides low power, low cost and low 
complexity communications for electronic devices in a 
small area. Bluetooth devices sharing a wireless channel 
form a piconet. In a Bluetooth piconet, the channel is 
slotted and the medium access scheme is based on polling 
algorithm controlled by the master in a Time Division 
Duplex (TDD) fashion. More specifically, the master 
sends packets to slaves in even-numbered slots triggering 
a transmission from slaves in subsequent slot. Slaves are 
allowed to send packets only in response to a master 
packet. Most of the previous work of the research in 
Bluetooth focused on the performance improvement in 
terms of channel utilization. Different polling and 
scheduling schemes as well as SAR policies for 
improving utilization in Bluetooth had been proposed [3-
7]. However, QoS for Bluetooth [8, 9] has attracted less 
attention in the literature. 

Bandwidth allocation is direct but important in supporting 
QoS to some extent for Bluetooth. A good bandwidth 
management scheme should meet the various bandwidth 
requirements of slaves when the total bandwidth 
requirement does not exceed the channel capacity for 
slaves, and on the other hand maintain fairness when the 

channel is saturated. Fairness of bandwidth allocation 
indicates that when the bandwidth is over-requested, 
slaves still get the bandwidth they have requested or the 
equal share of the channel capacity. 

Thus, goals of bandwidth management should include (1) 
bandwidth satisfaction and (2) fairness. A pure Round 
Robin polling scheme with three payload types (1, 3, 5 
slots) is not enough to meet the first goal mentioned 
above, since only three levels of bandwidth are provided. 
In this paper, a flexible bandwidth management scheme 
namely Bandwidth-based Polling (BBP) is proposed for 
bandwidth allocation for slaves. Since synchronous 
connections in Bluetooth provide a circuit-oriented 
service with constant bandwidth and are based on a fixed 
and periodic allocation of slots, the proposed scheme 
mainly focuses bandwidth allocation for asynchronous 
connections. 

The rest of the paper is organized as follows. The basic 
idea of the proposed scheme as well as the actions of 
slaves and the master are presented in section 2. 
Performance evaluation of the proposed scheme is 
presented in section 3. Finally section 4 concludes this 
paper. 
 
 
2.  Bandwidth-based Polling 
 
2.1 Basic Idea 

In order to allocate proper bandwidth, a framing structure 
of time is defined, and the master allocates proper number 
of slots for each active slave in a frame. The length of the 
frame should not be static but dynamic for flexible 
bandwidth allocation. Moreover, since only 3 payload 
types (1, 3, 5 slots) can be used for slaves, if the master 
equally polls each active slave in a time frame, only three 
levels of bandwidth can be allocated, which greatly 
reduce the flexibility of bandwidth allocation. Therefore, 
the proposed Bandwidth-Based Polling (BBP) scheme 
allows the master to poll a slave more than once in a time 
frame to achieve high flexibility. 

Multiple polling for a slave implies that the slave can 
transmit data by any combination of 1-, 3-, and 5-slot 
payload in a frame. However, since a larger payload (e.g. 
DH5) has higher utilization than a smaller one (e.g. DH1), 



it is better for a slave to properly choose a larger payload 
for each poll, and the combinations of payload in BBP are 
shown in Table I. Byte count (ByteCount) as well as the 
polling time for a payload type are also included in the 
table. Note that the payload type higher than DH5 
represents a combination of DH5, DH3, and DH1. For 
example, DH8 means DH5+DH3 (polling twice), and 
DH11 means DH5+DH5+DH1 (polling three times). 
Practically, BBP should set a proper value for the 
maximum polling time, which also determines the 
maximum payload type. For instance, maximum polling 
time K results in maximum payload type DH5*K in a time 
frame. 
Calculation of the number of slots and the polling time in 
a time frame for a given bandwidth requirement is 
explained in the following. Given that the master restricts 
the frame size of the piconet within a limit value namely 
PicoFrameLimit (in slots) and the bandwidth requirement 
of slavei is BwRQi (in bps), the number of bytes at most 
(#Bytesi) that need to be transmitted in a frame for slavei 
is #Bytesi = BwRQi * PicoFrameLimit * 625µs. Payload 
type for slavei in a frame should be the smallest one in 
Table I whose ByteCount >= #Bytesi or the maximum 
payload type DH5*K, where K is the maximum polling 
time predefined by BBP. 
BBP adopts a progressive and distributed approach for 
bandwidth allocation, which crosses several time frames 
to finish. The master and slaves in a piconet exchange 
information in each frame for bandwidth management. 
Initially, the payload type for an active slave is set as the 
smallest one, i.e. DH1. During the bandwidth allocation 
(negotiation) process, each slave tries to upgrade its 
payload type to have a larger share of channel capacity to 
fulfill its bandwidth requirement. 
On the other hand, the master controls the bandwidth 
allocation by properly changing (either enlarging or 
shrinking) PicoFrameLimit. Moreover, BBP adopts the 
soft-state bandwidth reservation, which means a slave 
needs to issue its bandwidth request in each frame to 
maintain its bandwidth share. Bandwidth requests that are 
granted in a time frame are served in the next frame. In 
other words, during a time frame, a slave is served the 
bandwidth it has requested in the previous frame and 
refreshes its bandwidth requirement for the following 
frame. Details of the actions at the slave and the master of 
BBP are explained respectively in the following sections. 
 

2.2 Actions at the Slave 

While the master polls a slave, current PicoFrameSize 
and PicoFrameLimit are passed to the slave. The slave 
tries to upgrade its payload type from DH1. New payload 
type (denoted by RequestSloti) is calculated according to 
current PicoFrameLimit and the bandwidth requirement 
of the slave (BwRQi) as mentioned above. However, 
upgrading the payload type will also increase the frame 
size of the piconet (PicoFrameSize). Upgrade of the 
payload type is successful only when the resulted frame 
size is still smaller than current PicoFrameLimit. The idea 
is illustrated in Figure 1. Increase of the slots for the 
upgrade is easily computed from the new payload type 
(RequestSloti) and the change of the downstream slots 
from the master to the slave. 

If the upgrade is successful, number of slots allocated to 
the slave in a frame (denoted by AllocateSloti) is 
RequestSloti, if not, AllocateSloti = DH1. Moreover, the 
slave computes its expected frame limit (in slots, denoted 
by FrameLimiti) according to the calculated payload type 
and its bandwidth requirement. Calculation of 
FrameLimiti is similar to the reverse of calculation of the 
payload type described in section 2.1: 

FrameLimiti=(ByteCount in RequestSloti)/(BwRQi*625µs) 

RequestSloti and FrameLimiti are both passed to the 
master for updating PicoFrameSize and PicoFrameLimit. 
 

Table I. Bytes and polling time for payload type in BBP 

Payload type DH1 DH3 DH5 DH6 DH8 DH10 DH11 DH13 DH15 …  

Polling time 1 1 1 2 2 2 3 3 3 …  

ByteCount 27 183 339 366 522 678 705 861 1017 …  

Remarks    5+1 5+3 5+5 5+5+1 5+5+3 5+5+5 …  
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Figure 1. Upgrading the payload type 
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2.3 Actions at the Master 

As mentioned above, the master passes PicoFrameSize 
and PicoFrameLimit to a slave and collects/records 
RequestSloti and FrameLimiti returned by the slave. 
RequestSloti and FrameLimiti represent the bandwidth 
request of the slave, and the master performs the same 
check (i.e. if the total number of slots is still under 
PicoFrameLimit or not) as the slave to grant the request 
or not. If the request is granted (in this case, the slave’s 
AllocateSloti = RequestSloti), PicoFrameLimit remains 
unchanged and the increase of slots by the upgrade is 
added to PicoFrameSize. 

On the other hand, if the request is rejected (in this case, 
the slave’s AllocateSloti = DH1), the master knows the 
upgrade is unsuccessful and enlarges PicoFrameLimit to a 
proper value so that the slave might have the chance to 
upgrade in the next frame. The master either sets the new 
value of PicoFrameLimit as the smallest FrameLimiti that 
is larger than the old PicoFrameLimit or just adds a 
proper number of slots to the old PicoFrameLimit. Again, 
new values of PicoFrameSize and PicoFrameLimit are 
passed to next slave. 

The master shrinks PicoFrameLimit on the leaving of a 
slave. In this case, the smallest FrameLimiti recorded at 
the master is assigned to the new value of 
PicoFrameLimit and the bandwidth negotiation process is 
activated again. 
 
2.4 Discussion 

If the bandwidth requirements of slaves in the piconet 
have not changed, BBP process reaches the equilibrium 
state when PicoFrameLimit and PicoFrameSize remain 
unchanged for two consecutive frames. A larger value of 
the maximum poling time in a frame may result in longer 
time before reaching the equilibrium state. Analysis of the 
worst case before reaching the equilibrium state for BBP 
is presented in the next section. 

Moreover, in order to support BBP, the header of packets 
needs to be modified for information exchange between 
the master and each slave (from the master to the slave: 
PicoFrameSize and PicoFrameLimit, from the slave to the 
master: RequestSloti and FrameLimiti). 
 
 
3.  Performance Evaluation 
 
3.1 Analysis of the impact of K 

We investigate the impact of K on bandwidth allocation 
by analyzing two performance criteria: (1) total number of 
bandwidth combination for slaves, and (2) the longest 
time (in the worst case) needed to reach the equilibrium 
state for a given K. The total number of bandwidth 
combination for a given K is denoted by NBW(K), and the 
worst-case time to reach the equilibrium state is denoted 
by TE(K). Apparently, a larger K results in a larger NBW(K) 
but also a larger TE(K). Thus, there is a trade-off between 

NBW(K) and TE(K) in deciding the value of K. We assume 
only slaves with bandwidth request are present in the 
piconet and the downstream payload from the master to 
each slave is always DH1 in the analysis. 

In order to calculate NBW(K), we consider the combination 
of payload first. We denote the number of payload 
combination by NPT(K). Considering the case of K=1, 
there is only three choices for each master-slave pair: 
(DH1, DH1), (DH1, DH3), and (DH1, DH5). Thus, the 
number of payload combination for K=1 and S slaves (S 
is the number of active slaves in the piconet) is C(3+S-1, 
S), which is actually the same as the number of ways to 
place S non-distinct objects into 3 distinct cells where a 
cell can hold more than one object. For a general K, there 
are 3K distinct cells (as shown in Table II) for S non-
distinct objects. Thus, NPT(K) = C(3K+S-1, S). 

Since there are cases that two different combinations of 
payload result in the same bandwidth allocation, NBW(K) 
is not equal to NPT(K). For instance, bandwidth allocation 
of slaves is actually the same for {(1, 5) (1, 5) (1, 5)} and 
{(2, 10) (2, 10) (2, 10)} for S=3. The actual number of 
bandwidth combination NBW(K) is calculated by a 
generator program of bandwidth combination. Values of 
NPT(K) and NBW(K) for S=7 are listed in Table III, which 
indicates that NPT(K) is pretty close to NBW(K). 

The longest time TE(K) for reaching the equilibrium state 
is calculated as follows. The initial frame size is 2*S (i.e. 
2 slots for each master-slave pair). The longest final frame 
size is 6*S*K (i.e. all slaves are served DH5*K in a 
frame). The master enlarges PicoFrameLimit if there is a 
slave not satisfying its bandwidth requirement. The worst 
case happens when there is always a slave not satisfying 
its bandwidth requirement and the master enlarges 

Table II. Pairs of payload for distinct cells 

Poll once Twice 3 times 4 times …  

(1, 1) 

(1, 3) 

(1, 5) 

(2, 6) 

(2, 8) 

(2, 10) 

(3, 11) 

(3, 13) 

(3, 15) 

(4, 16) 

(4, 18) 

(4, 20) 

…  

(1, 1) represents (master = DH1, slave = DH1) and 

(2, 6) represents (master = DH1*2, slave = DH5+DH1) 

K=2 

K=3 …  

Table III. NPT(K) vs. NBW(K) for S=7 

K K=1 K=2 K=3 K=4 K=5 K=6 

NPT(K) 36 792 6435 31824 116280 346104 

NBW(K) 36 784 6426 31703 116158 345304 

 



PicoFrameLimit in each frame until the longest frame size 
is reached. Since the most conservative way to enlarge 
PicoFrameLimit is to add 2 slots to PicoFrameLimit in 
each frame, the total number of slots before reaching the 
equilibrium state in the worst case is: 

TE(K) = )19(
2

2
*2**6

*)*2**6(
22 −=

−
+

KS

SKS
SKS

 (slots) 

For example, for K=4 and S=6, TE(K) = 5148 slots = 
3.2175 seconds (1600 slots = 1 second). 
 
3.2 Simulation results  

We have conducted a simulation study for performance 
evaluation of BBP. Several test cases were investigated 
and three of them are listed in Table IV. We assume that 
all active slaves in the piconet require some amount of 
bandwidth and neither best effort slaves nor synchronous 
connections exist in the piconet. We also assume the 
downstream data from the master to each slave adopts 1-
slot payload (DH1) in each poll. 

Bandwidth allocation of each slave in the test cases for 
different values of K is illustrated in Figures 2 ~ 4. These 
figures have shown that a larger K for BBP can achieve 
more flexibility in bandwidth allocation at the expense of 
longer time before reaching the equilibrium state. 
Therefore, there is a tradeoff between flexibility of 
bandwidth allocation and time before reaching the 
equilibrium state while selecting a proper value of K for 
BBP. 
 
 
4.  Conclusion  

Bandwidth-based Polling (BBP) for bandwidth 
management in Bluetooth is proposed in this paper. BBP 
adopts a dynamic framing structure of time, and the 
master allocates proper number of slots for each active 
slave in a frame. Moreover, BBP allows the master to poll 
a slave more than once in a time frame to achieve high 
flexibility in bandwidth allocation. Calculation of the 
payload type and the polling time in a frame for a slave 
with bandwidth requirement is presented in the paper. 
BBP adopts a progressive approach for bandwidth 
allocation, which crosses multiple time frames to finish. 

The master and slaves supporting BBP need to cooperate 
and exchange necessary information in the bandwidth 
negotiation process. Actions of the master and the slave 
are also presented in the paper. Simulation results have 
shown that a good performance and flexibility of 
bandwidth allocation are achieved by BBP. 
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Table IV. Test cases for BBP 

BwRQi (Kbps) Slave 1 Slave 2 Slave 3 Slave 4 Slave 5 Slave 6 

Test Case 1 32 64 96 128 160 192 

Test Case 2 50  75 100 125 150 175 

Test Case 3 100 120 140 160 180 N/A 
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Figure 2. Bandwidth allocation of each slave for test case 1, K = 1 ~ 3 

Figure 3. Bandwidth allocation of each slave for test case 2, K = 1 ~ 4 
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Figure 4. Bandwidth allocation of each slave for test case 3, K = 2 ~ 5 
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