

A FLEXIBLE BANDWIDTH MANAGEMENT SCHEME IN BLUETOOTH

Chun-Chuan Yang and Chin-Fu Liu
Multimedia and Communications Laboratory

Department of Computer Science and Information Engineering
National Chi Nan University, Taiwan, R.O.C.

ccyang@csie.ncnu.edu.tw

Abstract
In this paper, a flexible bandwidth management scheme
namely Bandwidth-based Polling (BBP) for Bluetooth is
proposed. A framing structure of time is defined in BBP,
and the master allocates proper number of slots for each
active slave in a frame. Moreover, BBP allows the master
to poll a slave more than once in a time frame to achieve
high flexibility for bandwidth allocation. Calculation of
the payload type as well as the polling time in a frame for
a slave with bandwidth requirement is presented in the
paper. Actions of the master and the slave for supporting
BBP are also presented in the paper. Simulation results
have shown that a good performance and flexibility of
bandwidth allocation can be achieved by BBP.

Key Words
Bluetooth, QoS, Bandwidth management, Polling

1. Introduction
Bluetooth [1, 2] is an emerging technology of ad hoc
networking that provides low power, low cost and low
complexity communications for electronic devices in a
small area. Bluetooth devices sharing a wireless channel
form a piconet. In a Bluetooth piconet, the channel is
slotted and the medium access scheme is based on polling
algorithm controlled by the master in a Time Division
Duplex (TDD) fashion. More specifically, the master
sends packets to slaves in even-numbered slots triggering
a transmission from slaves in subsequent slot. Slaves are
allowed to send packets only in response to a master
packet. Most of the previous work of the research in
Bluetooth focused on the performance improvement in
terms of channel utilization. Different polling and
scheduling schemes as well as SAR policies for
improving utilization in Bluetooth had been proposed [3-
7]. However, QoS for Bluetooth [8, 9] has attracted less
attention in the literature.

Bandwidth allocation is direct but important in supporting
QoS to some extent for Bluetooth. A good bandwidth
management scheme should meet the various bandwidth
requirements of slaves when the total bandwidth
requirement does not exceed the channel capacity for
slaves, and on the other hand maintain fairness when the

channel is saturated. Fairness of bandwidth allocation
indicates that when the bandwidth is over-requested,
slaves still get the bandwidth they have requested or the
equal share of the channel capacity.

Thus, goals of bandwidth management should include (1)
bandwidth satisfaction and (2) fairness. A pure Round
Robin polling scheme with three payload types (1, 3, 5
slots) is not enough to meet the first goal mentioned
above, since only three levels of bandwidth are provided.
In this paper, a flexible bandwidth management scheme
namely Bandwidth-based Polling (BBP) is proposed for
bandwidth allocation for slaves. Since synchronous
connections in Bluetooth provide a circuit-oriented
service with constant bandwidth and are based on a fixed
and periodic allocation of slots, the proposed scheme
mainly focuses bandwidth allocation for asynchronous
connections.

The rest of the paper is organized as follows. The basic
idea of the proposed scheme as well as the actions of
slaves and the master are presented in section 2.
Performance evaluation of the proposed scheme is
presented in section 3. Finally section 4 concludes this
paper.

2. Bandwidth-based Polling

2.1 Basic Idea

In order to allocate proper bandwidth, a framing structure
of time is defined, and the master allocates proper number
of slots for each active slave in a frame. The length of the
frame should not be static but dynamic for flexible
bandwidth allocation. Moreover, since only 3 payload
types (1, 3, 5 slots) can be used for slaves, if the master
equally polls each active slave in a time frame, only three
levels of bandwidth can be allocated, which greatly
reduce the flexibility of bandwidth allocation. Therefore,
the proposed Bandwidth-Based Polling (BBP) scheme
allows the master to poll a slave more than once in a time
frame to achieve high flexibility.

Multiple polling for a slave implies that the slave can
transmit data by any combination of 1-, 3-, and 5-slot
payload in a frame. However, since a larger payload (e.g.
DH5) has higher utilization than a smaller one (e.g. DH1),

it is better for a slave to properly choose a larger payload
for each poll, and the combinations of payload in BBP are
shown in Table I. Byte count (ByteCount) as well as the
polling time for a payload type are also included in the
table. Note that the payload type higher than DH5
represents a combination of DH5, DH3, and DH1. For
example, DH8 means DH5+DH3 (polling twice), and
DH11 means DH5+DH5+DH1 (polling three times).
Practically, BBP should set a proper value for the
maximum polling time, which also determines the
maximum payload type. For instance, maximum polling
time K results in maximum payload type DH5*K in a time
frame.
Calculation of the number of slots and the polling time in
a time frame for a given bandwidth requirement is
explained in the following. Given that the master restricts
the frame size of the piconet within a limit value namely
PicoFrameLimit (in slots) and the bandwidth requirement
of slavei is BwRQi (in bps), the number of bytes at most
(#Bytesi) that need to be transmitted in a frame for slavei
is #Bytesi = BwRQi * PicoFrameLimit * 625µs. Payload
type for slavei in a frame should be the smallest one in
Table I whose ByteCount >= #Bytesi or the maximum
payload type DH5*K, where K is the maximum polling
time predefined by BBP.
BBP adopts a progressive and distributed approach for
bandwidth allocation, which crosses several time frames
to finish. The master and slaves in a piconet exchange
information in each frame for bandwidth management.
Initially, the payload type for an active slave is set as the
smallest one, i.e. DH1. During the bandwidth allocation
(negotiation) process, each slave tries to upgrade its
payload type to have a larger share of channel capacity to
fulfill its bandwidth requirement.
On the other hand, the master controls the bandwidth
allocation by properly changing (either enlarging or
shrinking) PicoFrameLimit. Moreover, BBP adopts the
soft-state bandwidth reservation, which means a slave
needs to issue its bandwidth request in each frame to
maintain its bandwidth share. Bandwidth requests that are
granted in a time frame are served in the next frame. In
other words, during a time frame, a slave is served the
bandwidth it has requested in the previous frame and
refreshes its bandwidth requirement for the following
frame. Details of the actions at the slave and the master of
BBP are explained respectively in the following sections.

2.2 Actions at the Slave

While the master polls a slave, current PicoFrameSize
and PicoFrameLimit are passed to the slave. The slave
tries to upgrade its payload type from DH1. New payload
type (denoted by RequestSloti) is calculated according to
current PicoFrameLimit and the bandwidth requirement
of the slave (BwRQi) as mentioned above. However,
upgrading the payload type will also increase the frame
size of the piconet (PicoFrameSize). Upgrade of the
payload type is successful only when the resulted frame
size is still smaller than current PicoFrameLimit. The idea
is illustrated in Figure 1. Increase of the slots for the
upgrade is easily computed from the new payload type
(RequestSloti) and the change of the downstream slots
from the master to the slave.

If the upgrade is successful, number of slots allocated to
the slave in a frame (denoted by AllocateSloti) is
RequestSloti, if not, AllocateSloti = DH1. Moreover, the
slave computes its expected frame limit (in slots, denoted
by FrameLimiti) according to the calculated payload type
and its bandwidth requirement. Calculation of
FrameLimiti is similar to the reverse of calculation of the
payload type described in section 2.1:

FrameLimiti=(ByteCount in RequestSloti)/(BwRQi*625µs)

RequestSloti and FrameLimiti are both passed to the
master for updating PicoFrameSize and PicoFrameLimit.

Table I. Bytes and polling time for payload type in BBP

Payload type DH1 DH3 DH5 DH6 DH8 DH10 DH11 DH13 DH15 …

Polling time 1 1 1 2 2 2 3 3 3 …

ByteCount 27 183 339 366 522 678 705 861 1017 …

Remarks 5+1 5+3 5+5 5+5+1 5+5+3 5+5+5 …

PicoFrameSize

Figure 1. Upgrading the payload type

(a) Successful upgrade (AllocateSloti = RequestSloti)

(b) Unsuccessful upgrade (need to wait for the master
enlarging PicoFrameLimit)

PicoFrameLimit

Slot increase by RequestSloti and downstream slots

PicoFrameSize

PicoFrameLimit

AllocateSloti = DH1

Slot increase by RequestSloti and downstream slots

2.3 Actions at the Master

As mentioned above, the master passes PicoFrameSize
and PicoFrameLimit to a slave and collects/records
RequestSloti and FrameLimiti returned by the slave.
RequestSloti and FrameLimiti represent the bandwidth
request of the slave, and the master performs the same
check (i.e. if the total number of slots is still under
PicoFrameLimit or not) as the slave to grant the request
or not. If the request is granted (in this case, the slave’s
AllocateSloti = RequestSloti), PicoFrameLimit remains
unchanged and the increase of slots by the upgrade is
added to PicoFrameSize.

On the other hand, if the request is rejected (in this case,
the slave’s AllocateSloti = DH1), the master knows the
upgrade is unsuccessful and enlarges PicoFrameLimit to a
proper value so that the slave might have the chance to
upgrade in the next frame. The master either sets the new
value of PicoFrameLimit as the smallest FrameLimiti that
is larger than the old PicoFrameLimit or just adds a
proper number of slots to the old PicoFrameLimit. Again,
new values of PicoFrameSize and PicoFrameLimit are
passed to next slave.

The master shrinks PicoFrameLimit on the leaving of a
slave. In this case, the smallest FrameLimiti recorded at
the master is assigned to the new value of
PicoFrameLimit and the bandwidth negotiation process is
activated again.

2.4 Discussion

If the bandwidth requirements of slaves in the piconet
have not changed, BBP process reaches the equilibrium
state when PicoFrameLimit and PicoFrameSize remain
unchanged for two consecutive frames. A larger value of
the maximum poling time in a frame may result in longer
time before reaching the equilibrium state. Analysis of the
worst case before reaching the equilibrium state for BBP
is presented in the next section.

Moreover, in order to support BBP, the header of packets
needs to be modified for information exchange between
the master and each slave (from the master to the slave:
PicoFrameSize and PicoFrameLimit, from the slave to the
master: RequestSloti and FrameLimiti).

3. Performance Evaluation

3.1 Analysis of the impact of K

We investigate the impact of K on bandwidth allocation
by analyzing two performance criteria: (1) total number of
bandwidth combination for slaves, and (2) the longest
time (in the worst case) needed to reach the equilibrium
state for a given K. The total number of bandwidth
combination for a given K is denoted by NBW(K), and the
worst-case time to reach the equilibrium state is denoted
by TE(K). Apparently, a larger K results in a larger NBW(K)
but also a larger TE(K). Thus, there is a trade-off between

NBW(K) and TE(K) in deciding the value of K. We assume
only slaves with bandwidth request are present in the
piconet and the downstream payload from the master to
each slave is always DH1 in the analysis.

In order to calculate NBW(K), we consider the combination
of payload first. We denote the number of payload
combination by NPT(K). Considering the case of K=1,
there is only three choices for each master-slave pair:
(DH1, DH1), (DH1, DH3), and (DH1, DH5). Thus, the
number of payload combination for K=1 and S slaves (S
is the number of active slaves in the piconet) is C(3+S-1,
S), which is actually the same as the number of ways to
place S non-distinct objects into 3 distinct cells where a
cell can hold more than one object. For a general K, there
are 3K distinct cells (as shown in Table II) for S non-
distinct objects. Thus, NPT(K) = C(3K+S-1, S).

Since there are cases that two different combinations of
payload result in the same bandwidth allocation, NBW(K)
is not equal to NPT(K). For instance, bandwidth allocation
of slaves is actually the same for {(1, 5) (1, 5) (1, 5)} and
{(2, 10) (2, 10) (2, 10)} for S=3. The actual number of
bandwidth combination NBW(K) is calculated by a
generator program of bandwidth combination. Values of
NPT(K) and NBW(K) for S=7 are listed in Table III, which
indicates that NPT(K) is pretty close to NBW(K).

The longest time TE(K) for reaching the equilibrium state
is calculated as follows. The initial frame size is 2*S (i.e.
2 slots for each master-slave pair). The longest final frame
size is 6*S*K (i.e. all slaves are served DH5*K in a
frame). The master enlarges PicoFrameLimit if there is a
slave not satisfying its bandwidth requirement. The worst
case happens when there is always a slave not satisfying
its bandwidth requirement and the master enlarges

Table II. Pairs of payload for distinct cells

Poll once Twice 3 times 4 times …

(1, 1)

(1, 3)

(1, 5)

(2, 6)

(2, 8)

(2, 10)

(3, 11)

(3, 13)

(3, 15)

(4, 16)

(4, 18)

(4, 20)

…

(1, 1) represents (master = DH1, slave = DH1) and

(2, 6) represents (master = DH1*2, slave = DH5+DH1)

K=2

K=3 …

Table III. NPT(K) vs. NBW(K) for S=7

K K=1 K=2 K=3 K=4 K=5 K=6

NPT(K) 36 792 6435 31824 116280 346104

NBW(K) 36 784 6426 31703 116158 345304

PicoFrameLimit in each frame until the longest frame size
is reached. Since the most conservative way to enlarge
PicoFrameLimit is to add 2 slots to PicoFrameLimit in
each frame, the total number of slots before reaching the
equilibrium state in the worst case is:

TE(K) =)19(
2

2
*2**6

*)*2**6(
22 −=

−
+

KS

SKS
SKS

 (slots)

For example, for K=4 and S=6, TE(K) = 5148 slots =
3.2175 seconds (1600 slots = 1 second).

3.2 Simulation results

We have conducted a simulation study for performance
evaluation of BBP. Several test cases were investigated
and three of them are listed in Table IV. We assume that
all active slaves in the piconet require some amount of
bandwidth and neither best effort slaves nor synchronous
connections exist in the piconet. We also assume the
downstream data from the master to each slave adopts 1-
slot payload (DH1) in each poll.

Bandwidth allocation of each slave in the test cases for
different values of K is illustrated in Figures 2 ~ 4. These
figures have shown that a larger K for BBP can achieve
more flexibility in bandwidth allocation at the expense of
longer time before reaching the equilibrium state.
Therefore, there is a tradeoff between flexibility of
bandwidth allocation and time before reaching the
equilibrium state while selecting a proper value of K for
BBP.

4. Conclusion

Bandwidth-based Polling (BBP) for bandwidth
management in Bluetooth is proposed in this paper. BBP
adopts a dynamic framing structure of time, and the
master allocates proper number of slots for each active
slave in a frame. Moreover, BBP allows the master to poll
a slave more than once in a time frame to achieve high
flexibility in bandwidth allocation. Calculation of the
payload type and the polling time in a frame for a slave
with bandwidth requirement is presented in the paper.
BBP adopts a progressive approach for bandwidth
allocation, which crosses multiple time frames to finish.

The master and slaves supporting BBP need to cooperate
and exchange necessary information in the bandwidth
negotiation process. Actions of the master and the slave
are also presented in the paper. Simulation results have
shown that a good performance and flexibility of
bandwidth allocation are achieved by BBP.

References:
[1] Bluetooth SIG, Specification of the Bluetooth System

v1.0 B, Specification Volume 1& 2, December 1st
1999.

[2] The Bluetooth Web Site, http://www.bluetooth.com
[3] A. Capone, M. Gerla, and R. Kapoor, “Efficient

polling schemes for Bluetooth picocells,” Proc. IEEE
ICC 2001, pp. 1990-1994.

[4] A. Das, A. Ghose, A. Razdan, H. Saran, and R.
Shorey, “Enhancing performance of asynchronous
data traffic over the Bluetooth wireless ad-hoc
network,” Proc. IEEE INFOCOM 2001, pp. 591-600.

[5] R. Bruno, M. Conti, and E. Gregori, “Wireless
Access to Internet via Bluetooth: Performance
Evaluation of the EDC Scheduling Algorithm,” Proc.
ACM 1st Workshop on Wireless Mobile Internet,
2001, pp. 43-49.

[6] M. Kalia, D. Bansal, and R. Shorey, “Data
scheduling and SAR for Bluetooth MAC,” Proc.
IEEE VTC 2000-Spring, pp. 196-200.

[7] M. Kalia, D. Bansal, and R. Shorey, “MAC
Scheduling and SAR policies for Bluetooth: A master
Driven TDD Pico-Cellular Wireless System,” Proc.
IEEE Monuc’99, pp. 384-388.

[8] S. Chawla, H. Saran, and M. Singh, “QoS based
scheduling for incorporating variable rate coded
voice in Bluetooth,” Proc. IEEE International
Conference on Communications, 2001 (ICC 2001),
pp. 1232-1237.

[9] I. Chakraborty, A. Kashyap, A. Kumar, A. Rastogi, H.
Saran, and R. Shorey, “MAC scheduling policies
with reduced power consumption and bounded packet
delays for centrally controlled TDD wireless
networks,” Proc. IEEE International Conference on
Communications, 2001 (ICC 2001), pp. 1980-1984.

Table IV. Test cases for BBP

BwRQi (Kbps) Slave 1 Slave 2 Slave 3 Slave 4 Slave 5 Slave 6

Test Case 1 32 64 96 128 160 192

Test Case 2 50 75 100 125 150 175

Test Case 3 100 120 140 160 180 N/A

(a) K = 1 (b) K = 2

Frame no (0 ~ 1 sec)

(c) K = 3

Frame no (0 ~ 1 sec)

Frame no (0 ~ 1 sec)

Slave 3, 4, 5, 6

Slave 1, 2

Slave 4, 5, 6

Slave 3

Slave 2

Slave 5

Slave 2

Slave 1

Slave 3

Slave 4

Slave 6

Slave 1

Figure 2. Bandwidth allocation of each slave for test case 1, K = 1 ~ 3

Figure 3. Bandwidth allocation of each slave for test case 2, K = 1 ~ 4

(a) K = 1 (b) K = 2

Frame no (0 ~ 1 sec)

(c) K = 3 (d) K = 4

Frame no (0 ~ 1 sec)

Frame no (0 ~ 1 sec) Frame no (0 ~ 1 sec)

Slave 2, 3, 4, 5, 6

Slave 1

Slave 4, 5, 6

Slave 2, 3

Slave 1

Slave 5, 6

Slave 2

Slave 1

Slave 3

Slave 4
Slave 5

Slave 2

Slave 1

Slave 3

Slave 4

Slave 6

Figure 4. Bandwidth allocation of each slave for test case 3, K = 2 ~ 5

(a) K = 2 (b) K = 3

Frame no (0 ~ 1.5 sec)

(c) K = 4 (d) K = 5

Frame no (0 ~ 1.5 sec)

Frame no (0 ~ 1.5 sec) Frame no (0 ~ 1.5 sec)

Slave 2, 3, 4, 5

Slave 1

Slave 3, 4, 5
Slave 2

Slave 1

Slave 2
Slave 1

Slave 3

Slave 4, 5
Slave 5

Slave 2
Slave 3

Slave 4

Slave 1

