
Multimedia Tools and Applications, 21, 243–260, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

SMILAuthor: An Authoring System
for SMIL-Based Multimedia Presentations

CHUN-CHUAN YANG ccyang@csie.ncnu.edu.tw
YI-ZHENG YANG
Multimedia and Communications Laboratory, Department of Computer Science and Information Engineering,
National Chi Nan University, Taiwan, Republic of China

Abstract. In this paper, an authoring tool named SMILAuthor for SMIL-based multimedia presentations is
proposed. SMILAuthor adopts standard SMIL language as the format of the presentation to generate reusable and
easily accessible presentations. Moreover, powerful editing functions such as cut, copy, and paste are supported by
the system in a timeline-based manner. In order to support timeline-based editing functions, the playback duration
of each object in the input SMIL script is first calculated by the parsing process of the system. The parsing process
extracts and converts the temporal relationship of the input script to Real-Time Synchronization Model (RTSM),
and the playback duration of each object in the script is then computed by traversing the RTSM. Editing results are
converted to the SMIL format and saved in the output file. Language structure of SMIL is hidden by the system
and the temporal information is visualized in the timeline manner to provide users an easy way to understand and
control the timing of each object. Implementation of the system provides a friendly WYSIWYG environment and
multiple views/windows are provided by the system to help authors compose multimedia presentations efficiently.

Keywords: authoring system, multimedia presentation, Synchronized Multimedia Integration Language (SMIL)

1. Introduction

Providing a powerful and attractive mechanism, multimedia is currently changing the style
of digital life. The impact of multimedia is spreading out over every way in life, including
entertainment, education, and business. For example, multimedia presentations provide a
good tool for business demonstrations as well as distance learning. Multimedia presen-
tation is concerning with the integration of multimedia objects, which may be located at
remote data servers. In order to provide the useful tool for authors in designing multimedia
presentations, an authoring system is necessary. A good authoring system for multimedia
presentations should provide easy-to-use editing functions and meet the requirement of easy
learning and generating reusable presentations [13].

Design issues of the authoring system for multimedia presentations may include the
design of the format or internal structure for specifying the multimedia presentations [2, 4, 8,
23], the design of the user interface [12, 20], and the mechanisms for supporting the editing
functions [3, 6, 10, 11, 14, 15], etc. The format for specifying/storing the presentations
affects the popularity of the presentations. If the authoring system adopts a popular script
language supported by browsers like Internet Explorer or Netscape Navigator, the readers do
not have to install a special viewing program for the presentations. Unfortunately, different
authoring systems [3, 6, 10, 11, 14, 15, 23] usually adopt different and proprietary formats. It

244 YANG AND YANG

would be better to adopt a popular script language as the format of multimedia presentations
[2].

From the popularity point of view, HTML seems to be the best candidate. However, the
lack of the ability in integrating synchronized multimedia for HTML makes it improper to be
the language of multimedia presentations. Synchronized Multimedia Integration Language
(SMIL) [1, 5, 9, 21, 22] was developed by the WWW Consortium (W3C) to allow for multime-
dia over WWW. It provides an easy way to compose multimedia presentations. With the ef-
forts of W3C, SMIL is becoming the most popular language in authoring multimedia presen-
tations, and in fact, it is currently supported by the newest versions of commercial browsers
such as Internet Explorer 6.0. We make a brief introduction to SMIL in the following.

SMIL could be used to describe both the spatial relationship and temporal relationship
of a multimedia presentation. The spatial relationship is concerning with the visual layout
of media objects in the presentation, while the temporal relationship is concerning with
the timing control of media objects. The elements for spatial relationship in SMIL include
the 〈layout〉 element and the 〈region〉 element. The 〈layout〉 element determines how the
elements in the document’s body are positioned. The 〈region〉 element controls the position,
the size, and scaling of media object elements.

The synchronization elements in SMIL for temporal relationship include the 〈seq〉 el-
ement, the 〈par〉 element, and the class of media object elements such as 〈img〉, 〈video〉,
〈audio〉 and 〈text〉, etc. The 〈seq〉 element defines a sequence of elements in which elements
play one after the other. The 〈par〉 element defines a simple parallel time grouping in which
multiple elements can play back at the same time. Both 〈seq〉 and 〈par〉 allow the nested
structure that means the children element of them could be any of the synchronization
elements. The media object elements allow the inclusion of media objects into an SMIL
presentation. Media objects are included by reference (using a URI). Besides, some syn-
chronization related attributes such as “begin”, “dur”, and “end” could be associated with
these synchronization elements. A sample SMIL document is shown in figure 1.

<smil>
 <head>
 <layout>
 <root-layout width="500" height="250" />
 <region id="R-1" top="10" left="10" height="200" width="200" />
 <region id="R-2" top="10" left="250" height="200" width="200" />
 </layout>
 </head>
 <body>
 <par>
 <audio id="lifecycle" src="lifecycle.ra" begin="1" dur="25" />
 <seq>

 </seq>
 </par>
 </body>
</smil>

Figure 1. A sample SMIL document.

SMILAUTHOR 245

Figure 2. Snapshot: RealSlideshow.

The direct way to create a SMIL document is to use a text editor and start writing
SMIL tags as most of the programmers do. For non-professionals, it is much better to
have an authoring system that helps users compose any SMIL documents in a visualized
(WYSIWYG) way. The SMIL-based authoring system should also provide easy-to-use
editing functions. There are some existing authoring systems for SMIL-based presentations.
Some of them only provide simple functionalities by which the users can only create
simple SMIL documents. For example, RealSlideShow [18] (figure 2) can only generate
presentations according to the static template provided by the tool.

Most of the existing authoring systems visualize SMIL tags and provide drag-and-drop
functions to ease the composition of SMIL documents, but they adopt a recursive (nested)
structure, in either icon-based or text-based way, which is similar to SMIL language structure
to display the temporal information in the document. From the nested structure, the user
cannot fast and easily understand the temporal relationship of all multimedia objects in
the document. It is better to display the temporal information in a timeline manner so that
users can easily understand the playback duration for each object. Moreover, none of them
provides powerful editing functions like cut, copy, and paste as in the word processors. For
instance, GRiNS [7] (icon-based, figure 3) and SMIL Composer [19] (text-based, figure 4)
allow users to compose arbitrary multimedia documents, but both they use the nested
structure for displaying the timing of objects and only provide simple editing functions
such as insertion, deletion, and changing attributes of objects. No functions like cut, copy,
and paste are supported in both systems.

Therefore, to address the popularity of the multimedia presentations and to provide
powerful editing functions, we designed and implemented a SMIL-based authoring system,
which is called SMILAuthor. As will be presented in the following sections, SMILAuthor
could accept existed SMIL1.0 [21] scripts as the imported presentations being included in
the new presentation. The SMILAuthor system parses the input SMIL script and represents
the presentation in a timeline-based form as in Director [16]. Editing functions such as
insert, clear, cut, copy, and paste, etc. could be used to compose the new presentation in the
timeline-based manner. The result of the editing process is finally represented in the SMIL
format and could be used as the imported presentation in another composing process.

246 YANG AND YANG

Figure 3. Snapshot: GRiNS.

Figure 4. Snapshot: SMIL composer.

SMILAUTHOR 247

The remainder of the paper is organized as follows. First of all, the overview of SMIL-
Author is presented in Section 2. Kernel mechanisms supporting the editing functions of
SMILAuthor are then presented in Section 3. Implementation issues of the system are
described in Section 4. Finally, Section 5 concludes this paper.

2. System overview

The goal of SMILAuthor is to provide useful functions for users to compose multimedia
presentations. We could roughly divide the authoring process into three main steps, i.e.,
input, editing, and output, as illustrated in figure 5. Kernel mechanisms supported by SMI-
LAuthor include (1) importing an existing presentation, (2) editing functions such as clear,
cut, copy, and paste, and (3) saving the result.

Since the editing functions play a significant role in the authoring system, the mechanism
supporting the functions affects the design of the other parts of the system. SMILAuthor
focuses on the SMIL-based presentations; however, the editing functions are difficult to be
realized in the manner of language, since these functions always involve the manipulation
of time for each object. Therefore, it is better to perform the editing functions in the time
domain, instead of the language domain. This is the reason why the input step in figure 5
requires computing the playback duration for each object for the input SMIL presentation.

In order to compute the playback duration for each object in the presentation, the author-
ing system has to parse the SMIL script. In our previous work, an algorithm to calculate the
playback duration was proposed [24, 25]. In the proposed algorithm, the temporal relation-
ship of the objects in the file is extracted and is represented by the Real-time Synchronization
Model (RTSM) [26]. The playback duration for each object is then obtained by traversing
the model. The parsing algorithm is briefly explained in Section 3.1.

Existing SMIL script

Insert new
objects (URIs)

INPUT

EDIT

OUTPUT

RTSM

Convert

Playback Duration

for each object

Compute

Clear

Cut Copy

Paste

Convert

New SMIL script

Spatial Editing

(visual layout)

Figure 5. Overview of the authoring process.

248 YANG AND YANG

The editing functions supported by the system include the functions of spatial editing
and those of temporal editing. The spatial editing is concerning with the visual layout of
the presentation, while the temporal editing is concerning with the timing property for each
object. Visual objects (such as video, image, text, etc.) must be associated with the display
region defined by the spatial editing functions. Hence, we could treat the display region of
a visual object as one of its attributes while performing the temporal editing functions. As
shown in figure 5, the editing functions, such as clear, cut, copy, and paste are performed on
the playback duration of the object. In other word, these editing functions are timeline-based.
The final result of editing is represented in the SMIL format and is saved to a file.

3. Kernel mechanisms of SMILAuthor

3.1. Parsing SMIL

As mentioned in Section 2, the temporal relationship among the objects of the input SMIL
file is first represented by RTSM [26]. After the simplifying and reduction processes for
the obtained RTSM, a reduced RTSM is obtained. The reduced RTSM is then traversed to
calculate the playback duration for each object. We use an example to explain the algorithm
briefly, and please refer paper [25] for the details.

The SMIL script in figure 6 requires the player to play the audio object URI-1, the video
object URI-2 and text object URI-3 synchronously since these three objects are contained
in a 〈par〉 element. The value of the “endsync” attribute in the 〈par〉 element requires 〈par〉
to end with the end of the audio object URI-1. In other words, once the audio object URI-1
finishes playing, the video object URI-2 and the text object URI-3 must also stop playing at
the same time. After the 〈par〉 element, the player has to display the image object URI-4 for
5 seconds, and then play the audio object URI-5 for 10 seconds. The obtained RTSM for
the sample SMIL document after the converting process is shown in figure 7. The enforced
place (denoted by double circle) is defined in RTSM as the dominated place for the firing
of the following transition, and the virtual places is a place with zero duration.

Simplifying process removes the redundancy of the obtained RTSM, so the simplified
RTSM is logically the same as the original RTSM. The simplified RTSM for the example

<seq>
<par endsync = id(URI-1)>

 <audio src=URI-1 />
 <video src=URI-2 />
 <text src=URI-3 />

</par>

<audio src=URI-5, dur= “10s” />

</seq>

Figure 6. A SMIL code snippet.

SMILAUTHOR 249

URI-1

URI-2

0s 0s

initial
place

URI-3

URI-4

5s

URI-5

10s

T1

T2

T3

T4

<par> <audio>

<text>

: virtual enforced place

: virtual place

Figure 7. RTSM for the sample SMIL snippet.

URI-1

URI-2

0s

initial
place

URI-3

URI-4

5s

URI-5

10s

Figure 8. Simplified RTSM for the example.

URI-1

URI-2

0s

initial
place

URI-3

URI-4

5s

URI-5

10s

Figure 9. Reduced RTSM for the example.

is displayed in figure 8. Reducing process removes places that feed into the same transition
with an enforced place, and the reduced RTSM for the sample is illustrated in figure 9.

The playback duration for each object, which is actually the duration from the firing time
of the start transition to firing of the end transition of the object in the reduced RTSM, is
computed by traversing the reduced RTSM started from the initial place. We illustrate the
playback duration for each object of the example in figure 10. The playback duration for
each object is then recorded for the editing functions presented in the next subsection.

250 YANG AND YANG

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

Time

Figure 10. Object playback duration for the example.

Note that although only the handling of the temporal relationship is presented in this
section, the parsing process also records the spatial information such as region and layout
for each object in the input script. The spatial information is treated as one of the attributes
for each object in the system to ease the implementation.

3.2. Editing functions

When the parsing process presented in last section is finished, all media objects with cor-
responding attributes such as URI, display region (created by spatial editing), playback
duration, etc. in the input SMIL file are stored in the object table. The playback duration
for an object is denoted by (T s

obj, T e
obj) in the paper. The playback duration means that the

object should be played out in the time interval after the presentation is started, and the
length of the duration is T e

obj − T s
obj. As mentioned in Section 2, the playback duration of

objects provides the operating domain for the editing fuctions. In the following, we present
the mechanism for each editing function supported in the system. Note that only the mecha-
nism for realization of the function is presented, the design of the user interface is presented
in Section 4.

3.2.1. Insert new objects. Inserting a new object to the presentation means to add a new
object to the object table. The user has to provide the values of attributes (URI, display region,
playback duration, etc.) for the inserted object. For visual objects, we define the spatial-
temporal conflict as the case that visual objects with the same display position have overlap
in their playback periods. Usually, the visual objects that will be played out concurrently
should not occupy the same display position. But there are cases that the spatial-temporal
conflict is allowable in a multimedia document for special purpose. Therefore, the authoring
system makes it an option for the user to decide if the spatial-temporal conflict is allowed
or not. If the spatial-temporal conflict is not allowable, the authoring system rejects the
insertion request if there is a spatial-temporal conflict between the new visual object and
those in the object table.

SMILAUTHOR 251

3.2.2. Modify object’s attributes. The user could change the attributes of the objects in the
object table. For example, the user may change the playback duration of an object by setting
new values of (T s

obj, T e
obj) for the object, which reflects the action of moving, enlarging, or

shortening the playback period of the object along the time line. Again, any modification
of attributes for visual objects has to pass the test of spatial-temporal conflict.

3.2.3. Clear. The clear function is used to clear (part of) an object in the object table. In
addition, the system also allows the user to clear a zone in the time line. A new object type
named zone is defined to differentiate from the normal objects. When the user specifies
a time zone to clear, all objects within the zone are cleared. The algorithm for the clear
function is shown in figure 11 and an example is given in figure 12, in which case (a) shows

Figure 11. The algorithm for the clear function.

0s

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s

Clear a time
zone

(a) Clear an object

(b) Clear a time zone

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

Clear the
object

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

URI-4

URI-5

10s 15s 25s 0s

Figure 12. E.g., the 〈Clear〉 function.

252 YANG AND YANG

the case of clearing an object, and case (b) shows the case of clearing a time zone. Notice
that the clearing action would sometimes result in the division of an object. For static objects
like image and text, the division is merely reflected by setting new values for the playback
periods. However, for continuous objects like video and audio, the division requires the
authoring system to relocate the corresponding part of the medium data. Similar situation
happens in other editing functions. For such cases, the system only needs to record the start
point and end point in the object file and sets proper values of attributes 〈clip-begin〉 and
〈clip-end〉 when saving the result, which actually does not introduce much overhead to the
authoring system.

3.2.4. Cut and copy. The cut function provides a way to cut (part of) an object or a time
zone and to save the cutting part in the clipboard for future pasting. The cutting action for
an object is similar to that of the clear function except that the cut part of the object is saved
in the clipboard of the system. However, cutting a time zone not only moves all objects
within the specified time zone to the clipboard but also advances the playback periods by
the length of the time zone for the objects that are behind the time zone. The algorithm of
the cut function is displayed in figure 13, and an example is given in figure 14.

The copy function is similar to the cut function in the algorithm of saving objects in the
clipboard, except that the copy function does not result in any change in the object table.

Figure 13. The algorithm for the cut function.

SMILAUTHOR 253

(a) Cut an object

(b) Cut a time zone

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

URI-4

URI-5

5s 15s 0s

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

Cut the
object

Save to the
clipboard

0s

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s

Cut a time
zone

Save to the
clipboard

Figure 14. E.g., the 〈Cut〉 function.

3.2.5. Paste. The paste function provides the user to paste the objects in the clipboard at
some time point of the presentation. The paste action depends on the types of object stored
in the clipboard. If only one single object in the clipboard, the paste action is similar to that
of inserting a new object, in which the user should specify the time point and the display
position to insert. On the other hand, if a time zone object is stored in the clipboard, the
paste function inserts the time zone (with all objects saved in the zone) at the specified time
point. Figure 15 shows examples of the two cases for the paste function. The algorithm of
paste function is shown in figure 16. Note that the algorithm does not allow the paste point
Tpaste within the playback period of some objects to reduce the complexity of the function.

3.3. Saving the result

When user finishes the editing process and asks the authoring system to save the result, the
system converts the objects in the object table to a SMIL file. The converting algorithm has
to deal with both the spatial and temporal information of objects in the object table. The
spatial information created by the spatial editing functions is concerning with the layout
of display region for visual objects, and it is easy to convert the spatial information to the
layout-related elements in SMIL, such as 〈layout〉 and 〈region〉. On the other hand, since
the playback periods of objects spread over the time line, the temporal information is much
more complicated than the spatial information. The converting algorithm thus focuses on
the conversion of the temporal information to SMIL.

The temporal information consists of a set of media objects each with its playback
period. The most straightforward way to convert the temporal information is to treat all

254 YANG AND YANG

(a) Paste: an object in the clipboard

(b) Paste: a time zone in the clipboard

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

URI-3

From the
clipboard

0s

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

Paste point (0s)

URI-4

URI-5

5s 15s 0s

Paste point (0s)

From the
clipboard

Figure 15. E.g., the 〈Paste〉 function.

Figure 16. The algorithm for the paste function.

media objects as the children of a root 〈par〉 element. The “begin” attribute for each object
is assigned to the playback time T s

obj of the object and the “dur” attribute is assign to the
length of the playback duration, i.e., T e

obj − T s
obj. The straightforward conversion is simple

but introduces more overheads to the browser while presenting the SMIL file. The reason is
that the straightforward conversion makes all media objects the children of a 〈par〉 element,
and the 〈par〉 element, by the definition, requires the browser to deal with all its children
concurrently. Hence, more processing overhead and more buffers are required for browsing
the resulted SMIL file of the straightforward conversion.

Therefore, from the processing point of view of the browser, more sequential parts in the
resulted SMIL file make the browsing more efficient. Unfortunately, it is not easy at all to find

SMILAUTHOR 255

as fewer as possible sets of objects with disjoint playback periods from the temporal informa-
tion after arbitrary editing process. Thus, we try to find some clues from the semantic level.

First of all, since the number of medium used in a presentation is limited, we could first
classify the objects by their medium type. Objects of each medium type form a child element
of the root 〈par〉 element in the SMIL file. Furthermore, if the user sets the option that the
spatial-temporal conflict is not allowable, it implies that the visual objects with the same
display position form a set of disjoint playback periods. Therefore, if we further classify
the objects of a visual medium by the display position, we could determine all the sets of
disjoint objects for that medium. More specifically, a set of disjoint objects forms a 〈seq〉
element for the same display position, and all sets of the same medium type further forms
the children of a 〈par〉 element which is one of the children of the root 〈par〉. We illustrate
the idea by the example in figure 17.

The classification by the display position does not work for non-visual objects like audio,
so we developed the Scan2SMIL algorithm to convert non-visual objects. The Scan2SMIL
does not consider any semantic relationship among the objects, but only provide a rule to
determine a set of disjoint objects in each scan (iteration). The first step in Scan2SMIL is
sorting the objects by T s

obj. Next, the algorithm selects the object with smallest T s
obj as the

Step1: Classify objects by medium type

Tx1

Img1

Tx2

A1

8s 15s 0s

A2

A3

V2

4s 10s 5s

V3

V1

Step2: Classify visual objects by
position

Tx1

Img1

Tx2

A1

8s 15s 0s

A2

A3

V2

4s 10s 5s

V3

V1

child1

child2

child3

child4

<par>

(Editing result)

<par>
 <par>
 <V1> (begin=8s, dur=7s)
 <seq>
 <V2> (dur=5s)
 <V3> (begin=3s, dur=7s)
 </seq>
 </par>
 <par>
 <seq>
 <A1> (dur=5s)
 <A3> (begin=3s, dur=7s)
 </seq>
 <A2> (begin=4s, dur=11s)
 </par>
 <par>
 <seq>
 <Tx1>(begin=4s, dur=6s)
 <Tx2>(dur=5s)
 </seq>
 </par>
 <img1> (dur=8s)
</par>

0s

Tx1

Img1

Tx2

A1

8s 15s

A2

A3

V2

4s 10s 5s

V3

V1 pos1

pos2 -> <seq>

pos3 -> <seq>

pos4

<par>

Scan2SMIL
Algorithm

Step3: Converting

Figure 17. E.g., convert playback duration to SMIL.

256 YANG AND YANG

Figure 18. The Scan2SMIL algorithm.

first object of a new set of disjoint objects. The algorithm then searches the nearest disjoint
object for the set of disjoint objects, i.e., the object with the smallest value of T s

obj such
that T s

obj of the object ≥T e
obj of the first object in the set. The nearest object is added to the

set of disjoint objects as the second object. The scanning process continues to search the
next nearest disjoint object for the second object, the third object, etc. until all objects are
scanned. The objects in the set obtained from the iteration obviously form a 〈seq〉 element
and are removed from the object table. Similarly, following iterations create other sets of
disjoint objects and form more 〈seq〉 elements. The algorithm stops when no objects in the
object table. All 〈seq〉 elements from all iterations form the children of a 〈par〉 element of
the non-visual medium.

The Scan2SMIL algorithm is displayed in figure 18, and the converting algorithm
(Convert2SMIL) for the temporal information is displayed in figure 19. If the user requires
the system to allow the the existence of the spatial-temporal conflict for the composing

Figure 19. The Convert2SMIL algorithm.

SMILAUTHOR 257

presentation, the Convert2SMIL algorithm should adopts Scan2SMIL for objects of each
medium type, instead of considering the semantic level conversion.

3.4. Dealing with the hyperlinks

The link element 〈a〉 allows the description of navigational links that gives the user con-
siderable flexibility to point and click on elements and go to the referenced URI during
presentation. The functionality of the 〈a〉 element in SMIL 1.0 is restricted in that it only
allows associating a link with a complete media object. Thus, the authoring system deals
with the 〈a〉 element as the normal media object but records the link (URI) associating with
the media object. Users can perform any of the editing functions on the media object asso-
ciated with the 〈a〉 element. When the editing result is converting to a SMIL document, the
media objects with hyperlinks is converted to the 〈a〉 element, instead of the media element.

4. System implementation

The implementation of SMILAuthor follows a similar concept as proposed in [12] to provide
a “WYSIWYG” authoring environment. There are five major windows in the system to
provide different views for the currently composing presentation. They are (1) visual layout
window, (2) timeline window, (3) filter window, (4) attribute window, and (5) preview
window. The display of the system on the monitor is shown in figure 20.

Figure 20. The display of SMILAuthor on the screen.

258 YANG AND YANG

The visual layout window is used for the author to edit spatial relationship required by
the presentation. The user could use the window to add, delete, resize, and move regions for
the visual layout of the presentation. The timeline window displays the playback duration
for objects. The users use the timeline windows to perform editing functions mentioned
in Section 3. In order to reduce the large amount of information that has to display to
the author, a filter window is used for the author to set displaying rule for both visual
layout window and timeline window. The author could display selected information by
specifying either medium type or time duration in the filter window. The attribute window
is used to display and modify the attribute information for each object. Finally, the preview
window is used to preview the presentation before saving the result to a file. Moreover, the
preview window allows the author to preview only part of the presentation by specifying
the preview duration, which is called partial preview function in the system. The preview
window invokes an external player, RealPlayer [17] for the preview function.

Current version of the implementation only supports version 1.0 of SMIL [21]. We are
going to support SMIL 2.0 [22] in the next version of the system.

5. Conclusion

A WYSIWYG authoring system for SMIL-based multimedia presentations named
SMILAuthor is proposed and presented in this paper. Kernel mechanisms supported by
the system include importing an existed SMIL script for the new presentation, useful edit-
ing functions such cut, copy, and paste for objects in the presentation, and saving the result
in SMIL format. Since the editing functions supported in the system are timeline-based, the
playback duration for each object in the input script has to be computed first in the parsing
stage by traversing the RTSM representing the temporal relationship of the input script.
Algorithms of editing functions and converting timeline-based information to SMIL format
are included in the paper. Implementation issues of SMILAuthor are also presented in the
paper. The features and advantages of SMILAuthor are listed as follows:

(1) SMILAuthor generates reusable and easily accessible multimedia presentations, since
the standard SMIL language is adopted for I/O of the system, and users could use popular
browsers like Microsoft Internet Explorer or Netscape Navigator for the playback of
the presentations.

(2) Powerful editing functions, such as cut, copy, and paste, etc. are provided in the system to
help authors compose new presentations in a more flexible way. These editing functions
not only provide the manipulation for an individual (or part of) object but also the
manipulation of a set of objects by specifying the time zone.

(3) Moreover, timeline-based editing functions with corresponding graphical user inter-
face in the implementation provide users with an intuitive and easy-to-learn authoring
environment. Language structure of SMIL is hidden by the system and the tempo-
ral information is visualized in the timeline manner to provide users an easy way to
understand and control the timing of each object.

(4) Multiple views (windows) are provided in the implementation of the system to help users
compose presentations friendly and efficiently. Partial preview function is provided by

SMILAUTHOR 259

the system so that the author could conveniently preview selected part of the composing
presentation.

References

1. L. Bouthillier, “Synchronized multimedia on the Web—A new W3C format is all smiles,” Web Techniques
Magazine, Vol. 3, No. 9, 1998.

2. S.-K. Chang, “Perspectives in multimedia software engineering,” in Proceedings. IEEE International Confer-
ence on Multimedia Computing and Systems, 1999, pp. 74–78.

3. D. Del Corso, G. Morrone, E. Ovcin, A. Truzzi, C. Scrizzi, and M. Gastaldi, “Interactive educational multi-
media: A quick design and development tool,” in Proceedings., IEEE International Conference on Multimedia
Computing and Systems, 1999, Vol. 2, pp. 841–845.

4. J. Emery and A. Karmouch, “A time-based multimedia document architecture,” in Proceedings of IEEE
International Conference on Communications, 1995 (ICC ’95), Vol.1, pp. 555–559.

5. G. Flammia, “SMIL makes Web applications multimodal,” IEEE Intelligent Systems, Vol 13, No. 4, pp. 12–13,
1998.

6. J. Freire, R. Lozano, H. Martin, and F. Mocellin, “A STORM* environment for building multimedia pre-
sentations,” in Proceedings of 12th International Conference on Information Networking, 1998 (ICOIN-12),
pp. 329–332.

7. GRiNS, http://www.oratrix.com/GRiNS/index.html.
8. L. Hardman, G. van Rossum, and Dick C.A. Bulterman, “Structured multimedia authoring,” in Proceedings

of the First ACM International Conference on Multimedia, 1993, pp. 283–289.
9. P. Hoschka, “An introduction to the synchronized multimedia integration language,” IEEE Multimedia,

pp. 84–88,1998.
10. S. Hudson and C.-N. His, “The walk-through approach to authoring multimedia documents,” in Proceedings,

The Second ACM International Conference on Multimedia, 1994, pp. 173–180.
11. M. Jourdan, N. Layaı̈da, C. Roisin, L.S. Ismaı̈l, and L. Tardif, “Madeus, an authoring environment for inter-

active multimedia documents,” in Proceedings of 6th ACM International Conference on Multimedia, 1998,
pp. 267–272.

12. M. Jourdan, C. Roisin, and L. Tardif, “Multiviews interfaces for multimedia authoring environments,” in
Proceedings of Multimedia Modeling, 1998 (MMM’98), pp. 72–79.

13. J. Kelner, D. Hadj Sadok, F. Marques, and A. Neves, “The role of parametrization in the multimedia authoring
process,” in Proceedings, IEEE Conference on Protocols for Multimedia Systems—Multimedia Networking,
1997, pp. 142–149.

14. J. Kim and Sun Shin An, “Design and implementation of IMAT (Internet Multimedia Authoring Tool) using
a unified spatio-temporal relationship model,” in Proceedings of 3rd IEEE Workshop on Multimedia Signal
Processing, 1999, pp. 617–622.

15. D. Lowe and M. Sifer, “Refining the MATILDA multimedia authoring framework with a visual formalism,”
in Proceedings of 3rd IEEE International Conference on Multimedia Computing and Systems, 1996,
pp. 291–294.

16. Macromedia, Director 8, http://www.macromedia.com/software/director/.
17. RealNetworks, “RealPlayer Plus,” http://www.real.com/, 2000.
18. RealNetworks, “RealSlideshow,” http://proforma.real.com/rn/tools/slideshow/index.html.
19. Sausage, SMIL Composer, http://www.sausagetools.com/supertoolz/toolz/stsmil.html.
20. J. Song, M.Y. Kim, G. Ramalingam, R. Miller, and B.K. Yi, “Interactive authoring of multimedia documents,”

in Proceedings of IEEE Symposium on Visual Languages, 1996, pp. 276–283.
21. Synchronized Multimedia Integration Language (SMIL) 1.0 Specification, W3C Recommendation, June 1998,

http://www.w3c.org/TR/REC-smil.
22. Synchronized Multimedia Integration Language (SMIL) Boston Specification, W3C Working Draft 20-

August-1999, http://www.w3.org/TR/smil-boston.
23. M. Vazirgiannis, I. Kostalas, and T. Sellis, “Specifying and authoring multimedia scenarios,” IEEE Multimedia,

Vol. 6, No. 3, pp. 24–37, 1999.

260 YANG AND YANG

24. C.C. Yang, “User-interaction supported data-retrieving engine for distributed multimedia presentations,” in
Proceedings, IEEE International Conference on Communications, 2001 (ICC2001), pp. 3244–3250.

25. C.C. Yang, “On the design of the data-retrieving engine for distributed multimedia presentations,” in Proceed-
ings, IEEE International Conference on Communications, 2001 (ICC2001), pp. 3237–3243.

26. C.C. Yang and J.H. Huang, “A multimedia synchronization model and its implementation in transport proto-
cols,” IEEE Journal of Selected Area in Communications, Vol. 14, No. 1, pp. 212–225, 1996.

Chun-Chuan Yang received his B.S. degree in computer and information science from National Chiao-Tung
University, Taiwan, in 1990 and Ph.D. degree in computer science from National Taiwan University in 1996.
Since 1998, he has been an assistant professor in the department of computer science and information engineering,
National Chi-Nan University, Taiwan. His research area of interests includes multimedia network protocols,
multimedia synchronization control, and multimedia applications.

Yi-Zheng Yang received his B.S. degree in industry education from National Changhua University of Education,
Taiwan, in 1999 and the M.S. degree in computer science from National Chi Nan University, Puli, Taiwan, in
2001. His current research topic includes multimedia authoring systems and Internet applications.

