
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Synchronization modeling and its application
for SMIL2.0 presentations

Chun-Chuan Yang *, Yung-Chi Wang, Chih-Wen Tien

Multimedia and Communications Laboratory, Department of Computer Science and Information Engineering, National Chi-Nan University,

1, University Road, Puli, Nantou County 545, Taiwan, ROC

Received 25 November 2005; received in revised form 30 September 2006; accepted 30 September 2006
Available online 13 November 2006

Abstract

A novel synchronization model namely Extended Real-Time Synchronization Model (E-RTSM) for modeling SMIL2.0 temporal
behaviors is proposed in this paper. E-RTSM deals with event-based/non-deterministic synchronization as well as schedule-based syn-
chronization in SMIL2.0. Converting of the temporal relationship of a SMIL2.0 document to E-RTSM is presented. Moreover, design of
the E-RTSM-based data-retrieving engine for SMIL2.0 presentations is also proposed in the paper. The data-retrieving engine estimates
the worst-case playback time of each object at the parsing stage and applying an error compensation mechanism at run-time to adjust the
estimated playback time as well as the schedule of the fetching requests for data retrieval. Performance measurements from the real
implementation of the E-RTSM-based data-retrieving engine for SMIL2.0 presentations have demonstrated the efficiency of the pro-
posed technique.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Synchronized multimedia; SMIL2.0; Real-time synchronization model

1. Introduction

Multimedia presentation provides a good tool for busi-
ness demonstrations as well as distance learning. Multime-
dia presentation is concerning with the integration of
multimedia objects, which may be located at remote data
servers. Synchronized Multimedia Integration Language

(SMIL) (Synchronized Multimedia Integration Language,
1998, 2001; Bulterman, 2001, 2002) was developed by
WWW Consortium to address the lack of HTML for multi-
media over WWW. With the introduction of SMIL, Web
multimedia creators have a new tool for building time-
based multimedia presentations that combine audio, video,
images, animations, text, etc. There are two versions of
SMIL specification that had been released. The first version
of SMIL (SMIL1.0) (Synchronized Multimedia Integra-
tion Language, 1998) is primarily a scheduling model, but

with some flexibility to support continuous media with
unknown duration. The second version of SMIL (SMIL2.0)
(Synchronized Multimedia Integration Language, 2001;
Bulterman, 2001, 2002) enhances SMIL1.0 by providing a
strong support for user interaction with a declarative
event-based timing. Event-based timing in SMIL2.0 pre-
sents the non-deterministic synchronization behavior such
that the player cannot get the accurate playback time
(and duration) for a media object as well as the total length
of a presentation before run-time.

In our previous work, we had developed modeling and
converting techniques for parsing SMIL1.0 documents.
Real-Time Synchronization Model (RTSM) (Yang and
Huang, 1996) was used for modeling the temporal relation-
ship in SMIL1.0 documents. Based on RTSM, an efficient
data-retrieving engine was proposed and implemented
(Yang and Yang, 2004). However, the proposed techniques
in our previous work cannot be applied to SMIL2.0
directly. Extensions of RTSM as well as the modification
of the converting algorithm are necessary to cope with

0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.09.041

* Corresponding author.
E-mail address: ccyang@csie.ncnu.edu.tw (C.-C. Yang).

www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 1142–1155

Aut
ho

r's

pe
rs

on
al

co

py

non-deterministic features in SMIL2.0. In this paper, we
propose Extended RTSM (E-RTSM) and the convert-
ing algorithm to present the temporal relationship in a
SMIL2.0 document.

The application of E-RTSM modeling for SMIL2.0 may
include: (1) design of the SMIL2.0 player (Yang et al.,
2003a), (2) design of the data-retrieving mechanism in
SMIL2.0 players (Yang et al., 2003b), and (3) design of
the authoring tools for SMIL2.0 presentations (Yang
et al., 2004a,b). While viewing a multimedia presentation
via a SMIL2.0 player, the user should be able to perform
VCR-like control functions such as play/stop, pause/resume,
fast forward/backward, and sliding. Most of the commercial
products of SMIL2.0 player as well as the academic pro-
posals only support simple operations such as play/stop
and pause/resume. It seems none of them provides fast
forward/backward and sliding operations for SMIL2.0
presentations. The reason is the non-deterministic playback
behavior due to event-based timing in SMIL2.0 makes it
difficult to provide the advanced VCR-like functions.
Therefore, a good design of the SMIL2.0 player tackling
the non-deterministic characteristic and providing proper
VCR-like functions is a real challenge.

For SMIL2.0 authoring, the direct way to create a
SMIL2.0 document is to use to text editor and starting
writing SMIL tags as most of the programmers do. For
non-professionals, it is much better to have an authoring
system that helps users compose SMIL documents in a
visualized (WYSIWYG) way. Two major categories of
visualized SMIL1.0 authoring are (1) structure-based edit-
ing, and (2) timeline-based editing. Structure-based editing
is primarily based on the visualization of SMIL temporal
relations, and users need to organize nested hseqi and hpari
blocks. On the other hand, timeline-based editing hides the
language structure of SMIL by visualizing the playback
time and duration of each object in the timeline manner
providing users a more intuitive way to understand and
easily control the timing of each object. Since traditional
timeline-based editing can only provide schedule-based
presentations and is insufficient for SMIL2.0 authoring,
we are working towards the extension of non-determinis-
tism to timeline-based editing (Yang et al., 2004a). In this

paper, we focus on the application of E-RTSM modeling
in the design and implementation of SMIL2.0 data-retriev-
ing engine.

The remainder of the paper is organized as follows. First
of all, E-RTSM is presented in Section 2. The converting
algorithm from SMIL2.0 to E-RTSM is presented in Sec-
tion 3. E-RTSM-based data-retrieving engine designed
for SMIL2.0 presentations is presented in Section 4. Imple-
mentation of the proposed data-retrieving engine and per-
formance measurement are presented in Section 5. Related
work of multimedia synchronization as well as SMIL mod-
eling is discussed in Section 6. Finally, Section 7 concludes
this paper.

2. Extended Real-Time Synchronization Model (E-RTSM)

2.1. Brief survey of RTSM

RTSM was proposed to address the lack of Petri net

based models such as OCPN (Object Composition Petri

Net) (Little and Ghafoor, 1989) for dealing with real-time
synchronization. There are two kinds of places in RTSM,
regular places and enforced places. The firing rule of RTSM
specifies that once an enforced place becomes unblocked
(i.e. related action associated with the place is completed),
the following transition will be immediately fired regardless
the states of other places feeding the same transition. With
the enforced firing rule, temporal relationship of objects in
a SMIL1.0 document can be easily represented by RTSM.
A sample SMIL1.0 code snippet and its associated RTSM
are displayed in Fig. 1, in which an enforced place (denoted
by a double circle in the figure) can be mapped to a medium
unit (e.g. A1, A2, and A3) or a time unit (e.g. 10 s). Please
refer to our previous work (Yang and Huang, 1996) for
more detailed definition and properties of RTSM.

2.2. E-RTSM

Major differences between SMIL1.0 and SMIL2.0 in
timing control include: (1) Values of hbegini and hendi attri-
butes for an object (or time containers hpari and hseqi) can
be non-deterministic events, i.e. events with unknown

<seq>
 <par endsync=A1>
 <audio id=A1>
 <text id=X1>
 </par>

 <par endsync=A2>
 <audio id=A2>
 <text id=X2>
 </par>

 <par endsync=A3>
 <audio id=A3>
 <text id=X3>
 </par>
</seq>
...

X1

A1

I1

10s

Transition Arc

Regular place Enforced place

X2

A2

I2

10s

X3

A3

(Sample SMIL1.0 code snippet)

Fig. 1. An example of RTSM.

C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155 1143

Aut
ho

r's

pe
rs

on
al

co

py

occurring times such as Mouse-Click events or Key-Pressed

events. (2) Multiple values for hbegini and hendi attributes
are allowable for media objects and time containers, i.e. the
start or the end of a SMIL2.0 object can be controlled by
more than one event. (3) Some complicated synchroniza-
tion features such as hrestarti and hmin/maxi attributes
are also defined in SMIL2.0.

In order to cope with the non-deterministic synchroniza-
tion behaviors of SMIL2.0, two new features are added in
E-RTSM: (1) allowing a place in E-RTSM to be mapped to
a non-deterministic event (denoted by a ‘‘?’’ in a place). (2)
Run-time controllers for complicated synchronization fea-
tures are defined.

Introducing association of non-deterministic events with
E-RTSM places increases the flexibility of the model, but
it also increases the difficulty in processing the model, such
as the estimation of the firing time of each transition that
is addressed in Section 4. On the other hand, as presented
in Section 3, a non-deterministic event is always associated
with an enforced place in the application of converting
SMIL2.0 scripts to E-RTSM. However, from the viewpoint
of modeling, a regular place can also be mapped to a non-
deterministic event, and in such case the non-deterministic
event is not dominating the firing of the following transition.

Run-time controllers are used to model complicated tim-
ing features in SMIL2.0 that are difficult or impossible to
be represented by the combination of other basic elements
(arc, transition, and place). A run-time controller can be
placed in between any two transitions (the start transition
and the end transition) as places in E-RTSM. Bi-directional
arcs are used to connect the start transition to the run-time
controller and the run-time controller to the end transition.
A run-time controller is associated with a set of rules that
control the firing of the start and the end transitions.
Therefore, the operation of a run-time controller overrides
the operation of the places/transitions in between the start
and the end transitions of the run-time controller.

By using run-time controllers in E-RTSM, handling of
these complicated timing features is delayed until run-time
rather than the parsing phase. More specifically, the play-

back process of a SMIL2.0 document is divided into the
parsing phase and run-time phase in this paper, in which
the player parses and converts the script into E-RTSM in
the paring phase and perform the actual playback in the
run-time phase. Three run-time controllers are defined in
E-RTSM: Restart controller, Min controller, and Repeat
controller. Usage of these run-time controllers in modeling
SMIL2.0 elements is presented in the next section. For
completeness, we give the list of the terminologies used in
E-RTSM in Table 1. The complete definition of E-RTSM
is given as follows:

Definition 1. E-RTSM is a 10-tuple {T,P,E,R,A,B,D,M,
N,X}, where (Note that the differences between E-RTSM

and RTSM are underlined.)

T = {t1, t2, . . . , tn} transitions
P = {p1,p2, . . . ,pm} regular places (single circles)
E= {e1,e2, . . . ,ek} enforced places (double circles)
S = P [E all places
R = {r1, r2, . . . , ri} run-time controllers
A = {T · S} [{S · T} unidirectional arcs
B = {T · R} [{R · T} bi-directional arcs
D = S! Real number time duration of places
M = S! {m1,m2, . . . ,mj} regular types of medium
N = S! {n1,n2, . . . ,nt} non-deterministic events
X = S! {0,1,2} state of places

Each place may be in one of the following states:

0: no token

1: token is blocked A ‘‘cross’’ in the place

2: token is unblocked A ‘‘dot’’ in the place

The firing rules of E-RTSM are the same as those of
RTSM in the absence of run-time controllers. When a
run-time controller is presented between two transitions,
the firing of the transitions (the start transition and
the end transition) is controlled by the run-time controller,
which can override the firing rules associated with places.

Table 1
Terminology used in E-RTSM

Terminology Graph notation Meaning

Regular place Representation of a medium object or time duration

Enforced place A specialized place that dominates the firing of transition

Transition Synchronization control for a group of places

Run-time controller Modeling of the medium object with complicated timing attributes
Unidirectional arc Used for connecting a place to a transition
Bi-directional arc Used for connecting a run-time controller between two transitions

Place is blocked or The action associated with the place is unfinished

Place is unblocked or The action associated with the place is finished

Non-deterministic event or? ? Places that map to non-deterministic events like mouse-click

1144 C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155

Aut
ho

r's

pe
rs

on
al

co

py

3. Converting SMIL2.0 to E-RTSM

In this section, we focus on converting major differences
between SMIL2.0 and SMIL1.0 that are mentioned in Sec-
tion 2. The rest of converting of SMIL2.0 is similar to that
of SMIL1.0 in our previous work (Yang and Yang, 2004).

3.1. Converting begin and end attributes

We classify the value of hbegini and hendi attributes to
two types of event values: Time value event (event with
known occurring time, e.g., Clock-value) and Non-deter-

ministic event (Mouse-Click, Key-Pressed, etc). A time
value event is converted to an enforced place with duration
specified by the event as in SMIL1.0 conversion. On the
other hand, a non-deterministic event is converted to an
enforced place that maps to that event.

E-RTSM for an element (media element or time con-
tainer) with multiple hbegini values and hendi values is illus-
trated in Fig. 2. Note that in the figure, the start transition
of non-deterministic event values in End-value-list is differ-
ent from that of time value events. The reason is: SMIL2.0
specifies that a non-deterministic event in End-value-list

does not have any effect on an element until the element
has been activated.

3.2. Using run-time controllers

Currently, three run-time controllers as displayed in
Fig. 3 are defined in E-RTSM: Restart controller, Min con-

troller, and Repeat controller. SMIL2.0 allows an element
to be restarted multiple times during the element’s active
duration. The behavior is controlled by the hrestarti attri-
bute. Restart controller is used when the value of the
hrestarti attribute of an element equals ‘‘always’’ or
‘‘whenNotActive’’.

SMIL2.0 also allows the author to control the lower and
upper bound of the element active duration by using the
hmin/maxi attributes. Min controller is used when the hmini

attribute is presented for an element. The effect of the
hmaxi attribute is similar to that of a time value event in
End-value-list as shown in Fig. 3. Repeat controller is used
when either the hrepeatCounti attribute or the hrepeatDuri
attribute is presented for an element.

3.3. An example of the conversion

The sample SMIL2.0 code snippet in Fig. 4 is used to
illustrate the converting process. Note that the sample
SMIL2.0 code snippet is similar to the sample in Fig. 1
except some non-deterministic events and a hmini attribute
are presented. Text objects X1, X2, and X3 in the code
snippet of Fig. 4 are displayed only when button Btn1 is
clicked during the playback of audio objects A1, A2, and
A3 respectively. Image objects I1 and I2 are displayed for
10 s after the playback of A1 and A2, but the viewer can
terminate the display of the images before reaching 10 s
by clicking button Btn2. The hmini attribute with value

T

Obj

T

?

?

…

…

T

T

?

?

…

…

Begin-value-list

End-value-list

?

T

Non-deterministic event

Time value event

Fig. 2. Converting Begin-value-list and End-value-list.

Restart Controller

Obj

Begin-value-list

End-value-list

Min Controller

Repeat Controller

max

Fig. 3. Run-time controllers in E-RTSM.

<seq>
 <par endsync=A1>
 <audio id=A1>
 <text begin=”Btn1.Click” id=X1>
 </par>

 <par endsync=A2>
 <audio min=”15s” id=A2>
 <text begin=”Btn1.Click” id=X2>
 </par>

 <par endsync=A3>
 <audio id=A3>
 <text begin=”Btn1.Click” id=X3>
 </par>
</seq>
...

Fig. 4. A SMIL2.0 code snippet.

C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155 1145

Aut
ho

r's

pe
rs

on
al

co

pyof 15 s is associated with audio object A2 requiring A2 to
be played at least 15 s. The E-RTSM for the sample
SMIL2.0 code snippet is displayed in Fig. 5.

4. Design of the SMIL2.0 data-retrieving engine

4.1. Architecture of the engine

The data-retrieving engine is responsible for retrieving
proper media data for the playback of a presentation.
The concept of just-in-time data retrieving was proposed
in our previous work for SMIL1.0 presentations (Yang
and Yang, 2004). As illustrated in Fig. 6, just-in-time data
retrieving expects the retrieval process for an object to be
finished right before the playback time of the object so that
the player could continue the presentation smoothly. Thus,
the data-retrieving engine needs to compute the playback
time for each object. The request time for an object is then
calculated according to its playback time and bandwidth
estimation.

For SMIL2.0 presentations, the accurate playback time
for an object cannot be obtained before run-time because
of the non-deterministic events. Instead, the data-retrieving
engine calculates the worst-case playback time for each
object at the parsing stage, and at run-time applying an
error compensation mechanism for adjusting the estimated
playback time as well as the request time. Note that the
worst-case playback time of an object is defined from the
perspective of data-retrieval to be the earliest playback
time of the object by assigning zero time duration to each
non-deterministic event (i.e. the non-deterministic event
occurs instantaneously) in the script. In the actual playback
of the document (run-time), the playback time of each
object is revised according to the actual occurrence time
of the non-deterministic events, and the revised playback

time of an object is used for revising the request time of
the object as illustrated in Fig. 7. Overview of the proposed
data-retrieving process for SMIL2.0 documents is illus-
trated in Fig. 8.

4.2. Worst-case estimation for the playback time

At the parsing stage, the input document is first con-
verted to E-RTSM. The data-retrieving engine reduces E-
RTSM by removing the regular places that have no effect
on the firing time of a transition. As an example, Fig. 9
is the reduced E-RTSM for Fig. 5. The data-retrieving
engine calculates the worst-case playback time for each
object by assigning the duration of all non-deterministic
events to zero and traversing the reduced E-RTSM.

The playback time for an object is the firing time of its
start transition. There are only two possibilities for a tran-

X1

A1

I1

10s

?

?

I2

?

10s

X2

A2

? X3

A3

?

Min = 15s

Fig. 5. E-RTSM for the sample SMIL2.0 code snippet.

Object playback time

Time

Estimated data
retrieving time

Fetch request made Data retrieval finished

Fig. 6. Just-in-time data retrieval.

Estimated playback time
(Worst-case)

Time

Estimated data
retrieving time

Revised playback time

Request time

Estimated data
retrieving time

Revised Request
time

Fig. 7. Error compensation for data retrieval.

SMIL 2.0 document

E-RTSM

1. Converting

Compute the request time
to fetch media data

2. Calculation of worst-case playback time

3. Bandwidth
estimation

4. Error compensation
of estimated playback
time (at run-time)

Schedule fetching requests
according to the request time

Fig. 8. Data retrieving for SMIL2.0 documents.

1146 C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155

Aut
ho

r's

pe
rs

on
al

co

pysition without considering run-time controllers in the
reduced E-RTSM: (1) places feeding to the transition are
all enforced places, or (2) places feeding to the transition
are all regular places. For case (1), the firing time of
the transition is the minimal value of ‘‘the firing time of

the preceding transition’’ + ‘‘the duration of the following

place’’, which is illustrated in Fig. 10(a). The firing time
of the transition for case (2) is instead the maximum value
of its predecessors as illustrated in Fig. 10(b). The dura-
tion of each place depends on the type of the media object.
For static media objects such as himgi and htexti, the dura-
tion of the place is zero. For continuous media object like
haudioi and hvideoi, the duration of the place is the
implicit duration of the object that is provided by the data
server. Since the objects stored in a data server are all
pre-orchestrated, it is easy for the data server to obtain
the implicit duration of a continuous object. As mentioned
in the last paragraph, the duration of places that map to
a non-deterministic event is set zero in the worst-case
calculation.

During the traversal process of calculating the firing
time of each transition, we also need to deal with the
run-time controllers to get more accurate values for the
worst-case playback time. The Restart controller deals with
events that could restart an element during the active dura-
tion of the element, so the worst case would be no restart at
all. Thus, the restart controller is ignored in the worst-case
calculation. The Min controller specifies a lower bound of
the duration between the start transition and the end tran-
sition of an element, so the firing time of the end transition
should be updated if the estimated duration is smaller than
the hmini value. The Repeat controller deals with the

hrepeatDuri attribute as well as the hrepeatCounti attribute.
The hrepeatDuri attribute sets the duration of repeating an
element, so the firing time of the end transition should be
the end of the repeat duration. The hrepeatCounti attribute
specifies times of repeating for an element, thus the final fir-
ing time of the end transition is extended as many times as
specified by the hrepeatCounti value. Update of the firing
time of a transition with the run-time controllers is illus-
trated in Fig. 11.

For example, assuming the intrinsic durations for A1,
A2, and A3 are all 10 s, the worst-case playback time for
each object in Fig. 9 is A1 = 0 s, X1 = 0 s, I1 = 10 s,
A2 = 10 s, X2 = 10 s, I2 = 25 s, A3 = 25 s, X3 = 25 s.
(Note that these values are relative to the start time of
the presentation).

4.3. Calculation of the object request time

The objects that should be retrieved (played) depend on
the user action since different user actions (e.g. Fast For-

ward/Backward, Sliding, etc.) result in different playback
patterns and different playback times of objects. In this
paper, we only present the case of normal playback after
the SMIL script has been loaded at the player for simplic-
ity. Moreover, in order to determine the object request
time, the data-retrieving engine has to collect some meta-
information of each object from the data server. Therefore,
when the data-retrieving engine accepts the SMIL script, it
sends probe packets to all data servers to collect the object

Tx = Min (T1+D1, …, Tn+Dn) Tx = Max (T1+D1, …, Tn+Dn)

…

T1

T2

Tn

Tx

D1

D2

Dn

…

T1

T2

Tn

Tx

D1

D2

Dn

…

…

…

…

…

…

Fig. 10. Determine the firing time for transition Tx.

Restart

Obj

Min Controller

Repeat

TS TE => TE’

TE is the firing time w/o considering run-time controllers
TE’ is the updated firing time
TrepeatDur is the value of <repeatDur> attribute
CrepeatCount is the value of <repeatCount> attribute
Tmin is the value of <min> attribute

TE’ = TS + Max (TE – TS, Tmin)

TE’ = TS + TrepeatDur , or
TE’ = TS + CrepeatCount * (TE - TS)

Fig. 11. Impact of the run-time controllers on the worst-case firing time.

X1

A1

I1

10s

?

Btn1.Click ?

Btn2.Click

I2

?

Btn2.Click

10s

X2

A2

?

Btn1.Click

X3

A3

?

Btn1.Click

Min = 15s

Fig. 9. Reduced E-RTSM for the sample SMIL2.0 code snippet.

C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155 1147

Aut
ho

r's

pe
rs

on
al

co

py

information, which includes object size and estimated band-

width. We denote the object size for object URI-i as
SizeURI-i, the estimated bandwidth as EstBWURI-i.

The data server estimates the bandwidth for transmit-
ting the object to the data-retrieving engine. The estimated

bandwidth is used to estimate the total delay of an object
from the server to the client. There are two factors that
affect the item: (1) the transmission rate of the server for
the requested object, and (2) the effective network band-
width of the path from the server to the client. The trans-
mission rate depends on the load of the server and the
capacity of the outgoing link. The effective network band-
width can be measured by bandwidth measuring mecha-
nisms (Bolliger et al., 1999; Lai et al., 1999; Prasad et al.,
2003; Liu et al., 2003; Huang et al., 2004). Discussion on
the estimation of the end-to-end bandwidth for retrieving
an object is beyond the scope of the paper. If the server
cannot provide information about the estimated band-
width, it should inform the client to perform the estimation
by itself.

In addition to object related information, the data-
retrieving engine also has to estimate the time for the
request packet arrived to the data server. We use the round
trip delay, denoted by RTDelayURI -i as the estimated value
for the delay of the request packet to the server. Thus, the
total time to retrieve an object is the summation of
the delay of the request packet and the transmission time
of the object from the data server to the client site. That
is, the retrieving time for object URI-i is estimated as
(SizeURI -i/EstBWURI-i) + RTDelayURI-i. If the data server
supports the streaming mechanism for continuous objects,
it is not necessary to retrieve the whole content of the
object before its playback time. Only the amount of data
to support the streaming operation is required. Thus,
the transmission time of the object is BufferSizeURI-i/
EstBWURI -i, in which BufferSizeURI-i is the amount of data
to buffer. The value of BufferSizeURI-i depends on the
streaming operation and is not addressed in this paper.

The accuracy of end-to-end bandwidth estimation
affects the performance of the data-retrieving engine as well
as the quality of the presentation. Since the network behav-
ior is very dynamic, it is impossible to exactly estimate the
time required to finish the retrieving process for a media
object. We discuss the impact of the accuracy of estimated
time to finish the retrieving process for a media object on
the performance of the data-retrieving engine.

If the estimated time is more pessimistic (bandwidth is
underestimated) than the actual status, the object will be
buffered for some time before its playback time. On the
other hand, if the estimated time is more optimistic (band-
width is overestimated) than the actual status (e.g. network
is congested), the presentation will probably be paused to
wait for the object. Furthermore, if the network bandwidth
could be reserved in advance by some booking method, the
estimated object request time will be more precise. Hence,
the quality of the presentation and the buffer utilization
will also be improved.

4.4. Run-time error compensation

Apparently, the actual playback time for an object at
run-time is no earlier than the worst-case estimation. The
difference (error of estimation) between the actual playback
time and the worst-case estimation can be used to adjust
the estimated playback time of the following objects that
are not played yet. For example, if the event Btn2.Click

in Fig. 9 has occurred when I1 has been played 8 s, we
can then update the estimated playback time of the follow-
ing objects: A2 = 18 s, X2 = 18 s, I2 = 33 s, A3 = 33 s,
X3 = 33 s. New estimation of the playback time is then
used to re-calculate the new request time. The new request
time for an object may not change the schedule of the
object’s fetching request since the request probably had
already been issued to retrieve the data. But the error com-
pensation mechanism does make the estimated playback
time of later objects more close to reality and it also makes
data retrieval more intelligent.

5. Implementation and performance measurement

We have implemented an experimental system for the
feasibility and performance evaluation of the proposed
modeling technique as well as the data-retrieving engine.
The network environment for the experimental system is
shown in Fig. 12. There are three data servers in the sys-
tem. The performance criterion is the jitters between the
playback time and the arrival time of the object (i.e. jit-

ter = actual playback time � arrival time). A positive value
of the jitters implies the buffering time for the object before
playback, while a negative value of the jitters indicates the
pause time of the playback to wait for the object to arrive.
Thus, a positive value of the jitters closer to zero implies a
better performance.

In addition to the just-in-time (JIT) policy for data
retrieving, we also implemented two extreme policies
for performance comparison: pre-loading policy and pas-

sive-loading policy. In the pre-loading policy, the data-
retrieving engine retrieves all objects before starting the
presentation. Hence, the pre-loading policy guarantees
the smooth playback in the cost of a long initial delay
and a large buffer for all objects in the presentation. On
the other hand, the passive-loading policy does not make
the request to retrieve the object until the object’s playback

Player &
data-retrieving engine

TANET

NSYSU Server

163.22.21.224NCNU

CCU Server

NCNU Server

Fig. 12. Network environment for the experimental system.

1148 C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155

Aut
ho

r's

pe
rs

on
al

co

py

time. Thus, minimal buffer is required for the passive-load-
ing policy, but it introduces gaps between the request time
and the finish time of data retrieval because of the network
delay. It implies that the smooth playback is impossible for
the passive-loading policy.

Since the data servers cannot provide the advanced ser-
vice like bandwidth estimation, the data-retrieving engine
in our implementation has to estimate the bandwidth by
itself. In the just-in-time retrieving policy, the data-retriev-
ing engine measures the average bandwidth from the data
server to the client by requesting some test files from the
server. The EstBW obtained is then used in the calculation
of the object request time as presented in Section 4.

A test SMIL2.0 document (denoted by T1) for perfor-
mance measurement is displayed in Fig. 13, in which 8 text
objects, 6 images objects, and 3 audio objects are included
in the presentation. As shown in Fig. 14, the size of the
audio objects is above 1 Mbytes, the size of the image
objects is within the range of 100–200 Kbytes, and the size
of the text objects is within the range of 1–20 Kbytes. In
order to model the user behavior in viewing the document,
the occurrence of the non-deterministic ‘‘mouse.Click’’
event is controlled by two random numbers. The first ran-
dom number determines whether the event happens or not,
and the second random numbers determines the occurring
time of the event, which is uniformly distributed in between
0 and 10 s.

Fig. 15 shows the average jitters of 10 measurements for
the test SMIL2.0 documents (T1). Note that the error com-
pensation mechanism is not applied to the JIT policy in
Fig. 15. The pre-loading policy retrieves all the objects
before starting the playback of the presentation, so the
later the playback time of an object (which has a larger
ID in the test SMIL2.0 script T1), the larger jitters (more
buffering time) the object will experience. Therefore, the jit-
ters for the pre-loading policy form a monotonic ascending
curve in the figure. On the other hand, the jitters for the
passive-loading policy are always negative (although some
of the values are close to zero) as shown in the figure, and
the value of the jitters depends on the traffic condition and
the size of the requested object. Therefore, the proposed
JIT policy is better than the two extreme policies in terms
of both fewer buffers and smooth playback.

Fig. 16 shows the jitter results of the JIT policy with and
without error compensation respectively. The jitter curve of
the JIT policy without error compensation tends to go up
for objects with later playback time because of the worst-
case estimation of the playback time. On the other hand,
the proposed error compensation mechanism demonstrates
the benefit of run-time amendment and saves more buffers.
Fig. 17 displays the buffer utilization (the size of the
required buffers as a function of time for the test document)
during the worst-case playback process for each scheme.
As we expected, the pre-loading scheme requires the most

<body>
<seq>

<text id="x1" dur="5s" src="http://studentweb.ncnu.edu.tw/91321516/picture/x8.txt">

<par>

<text id="x2" src="http://studentweb.ncnu.edu.tw/91321516/picture/x4.txt">

</par>

<par endsync="A3">
<audio id="A3" dur="10s" begin="mouse.Click" src="http://www.cs.ccu.edu.tw/~hyhs91/temp/a2.wav">

<text id="x3" src="http://studentweb.ncnu.edu.tw/91321516/picture/x5.txt">

</par>

<par>

<text id="x4" src="http://dip2.cse.nsysu.edu.tw/~dio/x1.txt">

</par>

<par endsync="A5">
<audio id="A5" dur="10s" end="mouse.Click" src="http://dip2.cse.nsysu.edu.tw/~dio/a1.wav">

<text id="x5" src="http://studentweb.ncnu.edu.tw/91321516/picture/x6.txt">

</par>

<par>

<text id="x6" src="http://studentweb.ncnu.edu.tw/91321516/picture/x7.txt">

</par>

<par endsync="A7">
<audio id="A7" begin="mouse.Click" src="http://studentweb.ncnu.edu.tw/91321516/picture/a3.wav">

<text id="x7" src="http://www.cs.ccu.edu.tw/~hyhs91/temp/x2.txt">

</par>

<text id="x8" dur="5s" src="http://dip2.cse.nsysu.edu.tw/~dio/x3.txt">
</seq>

</body>

Fig. 13. The code snippet of test SMIL2.0 document T1.

C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155 1149

Aut
ho

r's

pe
rs

on
al

co

py

buffers among all schemes, and the passive-loading scheme
requires the fewest buffers. Moreover, Fig. 18 demonstrates

that the error compensation mechanism can effectively
reduce buffer utilization for the JIT scheme.

0

500

1000

1500

2000

2500

3000

3500

4000

X1 I1 X2 I2 X3 A1 X4 I3 A2 I4 I5 X5 X6 A3 I6 X7 X8
Object ID

O
bj

ec
t S

iz
e

(K
B

yt
e)

Fig. 14. Size of each object in test document T1.

-10

0

10

20

30

40

50

60

70

X1 I1 X2 I2 X3 A1 X4 I3 A2 I4 X5 I5 X6 I6 X7 A3 X8

Object ID

Pl
ay

ba
ck

 ti
m

e
-

A
rr

iv
al

 ti
m

e
(s

ec
) Pre-loading

JIT w/o error compensation

Passive-loading

Time

Fig. 15. Average jitters for objects in T1.

-2

0

2

4

6

8

10

12

14

16

18

20

X1 I1 X2 I2 X3 A1 X4 I3 A2 I4 X5 I5 X6 I6 X7 A3 X8

Object ID

Pl
ay

ba
ck

 ti
m

e
-

A
rr

iv
al

 ti
m

e
(s

ec
)

JIT w/o error compensation

JIT with error compensation

Fig. 16. Jitters: JIT with error compensation vs. JIT without error compensation for T1.

1150 C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155

Aut
ho

r's

pe
rs

on
al

co

py

0

2000

4000

6000

8000

10000

12000

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501

Time (0.01sec)

B
uf

fe
r

U
til

iz
at

io
n

(K
B

yt
e)

Pre-loading

JIT w/o error compensation

Passive Loading

Fig. 17. Buffer utilization in the three schemes for T1.

0

1000

2000

3000

4000

5000

6000

1 1001 2001 3001 4001 5001 6001 7001

Time (0.01sec)

B
uf

fe
r

U
til

iz
at

io
n

(K
B

yt
e)

JIT w/o error compensation

JIT with error compensation

Fig. 18. Buffer utilization: JIT with error compensation vs. JIT without error compensation for T1.

<body>
<seq>

<text id="x1" dur="3s" src="http://studentweb.ncnu.edu.tw/91321516/picture/x8.txt">

<audio id="A1" dur="5s" src="http://homepage.ntu.edu.tw/~d93944007/a1.wav">

<par endsync="A2">
<audio id="A2" dur="10s" begin="mouse.Click" src="http://homepage13.seed.net.tw/web@5/barucia/pic/a2.wav">

<text id="x2" src="http://studentweb.ncnu.edu.tw/91321516/picture/x5.txt">

</par>

<par>
<audio id="A3" begin="mouse.Click" src="http://studentweb.ncnu.edu.tw/91321516/picture/a3.wav">

<text id="x3" src="http://studentweb.ncnu.edu.tw/91321516/picture/x6.txt">

</par>

</seq>
</body>

Fig. 19. The code snippet of test SMIL2.0 document T2.

C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155 1151

Aut
ho

r's

pe
rs

on
al

co

py

Another set of performance measurements for a simpler
test document T2, of which the script is shown in Fig. 19
and the size of each object is shown in Fig. 20, is displayed
from Figs. 21–24. Once again, the results have demon-
strated the benefit of the proposed JIT scheme with error
compensation over the contrasts in terms of buffer
utilization.

6. Related work

For media synchronization, Manvi and Venkataram
(2006) proposed an adaptive synchronization agency for
synchronization of multimedia streams by using an
agent-based approach. The synchronization agency is aim-
ing for adaptation to the run-time and life-time presenta-
tion requirements of an application by using static and
mobile agents to estimate the network delays/jitters and
monitor the loss and playout times of the presentations
units. Adaptive synchronization mechanism adjusts play-

out times in accordance with changes in network condi-
tions and offers better quality presentation by maintaining
the sustainable losses.

Timing issues in multimedia formats had been addressed
intensively in the work of Rogge et al. (2004), in which 10
criteria were proposed in their reference model for compar-
ing existing multimedia formats including SMIL, Quick-

Time, Shockwave Flash, Realmedia, Advanced Streaming

Format, and MPEG-4. The authors concluded that SMIL
was the only document model supporting all 29 temporal
relationships in the reference model. Moreover, SMIL were
also designed to have good properties in terms of fine gran-
ularity, interactivity with users, extensibility, reusability,
adaptability, etc. In other words, from the academic view-
point, SMIL does have what it takes to become one of the
most important formats in multimedia presentations.

In the research of SMIL modeling, Yu et al. (2002)
proposed a formal approach to modeling and analyzing
temporal aspects of SMIL documents using the Software

0

500

1000

1500

2000

2500

3000

3500

4000

X1 I1 A1 A2 I2 X2 A3 I3 X3

Object ID

O
bj

ec
t S

iz
e

(K
B

yt
e)

Fig. 20. Size of each object in test document T2.

-5

0

5

10

15

20

25

X1 I1 A1 A2 I2 X2 A3 I3 X3

Object ID

Pl
ay

ba
ck

 ti
m

e
-

A
rr

iv
al

 ti
m

e
(s

ec
)

Pre-loading

JIT w/o error compensation

Passive-loading

Fig. 21. Average jitters for objects in T2.

1152 C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155

Aut
ho

r's

pe
rs

on
al

co

py

-2

0

2

4

6

8

10

12

14

X1 I1 A1 I2 X2 A2 I3 X3 A3

Object ID

Pl
ay

ba
ck

 ti
m

e
-

A
rr

iv
al

 ti
m

e
(s

ec
)

JIT w/o error compensation

JIT with error compensation

Fig. 22. Jitters: JIT with error compensation vs. JIT without error compensation for T2.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 501 1001 1501 2001

Time (0.01sec)

B
uf

fe
r

U
til

iz
at

io
n

(K
B

yt
e)

Pre-loading

JIT w/o error compensation

Passive-Loading

Fig. 23. Buffer utilization in the three schemes for T2.

0

500

1000

1500

2000

2500

3000

3500

4000

1 1001 2001 3001

Time (0.01sec)

B
uf

fe
r

U
til

iz
at

io
n

(K
B

yt
e)

JIT w/o error compensation

JIT with error compensation

Fig. 24. Buffer utilization: JIT with error compensation vs. JIT without error compensation for T2.

C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155 1153

Aut
ho

r's

pe
rs

on
al

co

py

Architecture Model (SAM). SAM is based on dual formal-
ism combining Petri nets and temporal logic. Although
SAM was claimed to use Petri nets, the time control infor-
mation (e.g. the value of attributes hbegini, hduri, and hendi
for an element) in SAM is stored in transitions instead of
places such that the transitions in SAM are not necessarily
instantaneous. Moreover, Yu’s work is basically focused
on SMIL1.0. Sampaio et al. (2000) proposed a RT-LOTOS

(Real-Time Language of Temporal Ordering Specifications

[Courtiat et al., 2000]) based mechanism for semantic ver-
ification of SMIL documents. Non-deterministic events
were considered in their work, but their target was mainly
SMIL1.0.

Chung et al. (2003) and Chung and Pereira (2005) pro-
posed a technique based on Timed Petri Net (TPN) to cap-
ture the timing and synchronization information of
multimedia objects specified in SMIL2.0. They incorpo-
rated a new type of transition (denoted by special transi-
tion), a couple of different types of state for places (two
tokens can be placed in a place, and each token can be in
one of three types), and complicated firing rules in TPN
for SMIL2.0 modeling. As a matter of fact, their proposed
model is not Petri net any more. Although some elaborate
features were added in TPN, the authors did not explain
how can the proposed scheme model some of the complex
timing control behaviors associated with hrestarti, hrepeat-

Counti, and hrepeatDuri attributes, etc. We doubts the fea-
sibility of using a graph-based modeling mechanism such
as OCPN, TPN, or E-RTSM, to completely capture the
complex temporal relationships among media objects in
SMIL2.0. Thus, the notion of run-time controllers is
adopted in our paper.

Deng et al. (2002) also proposed a TPN-based technique
for SMIL2.0 modeling. Instead of focusing on modeling
complex temporal relationships, they aimed at offering a
framework of web-based multimedia presentation system
that includes user-concerned adaptive adaptation opera-
tions as well as authoring process. Chang et al. (2004)
developed a temporal algebra system to unify media pre-
sentation time and interaction event and deal with qualita-
tive and quantitative inconsistency in SMIL2.0 documents.
Chang’s work can be used in semantic verification during
paring stage, which is helpful in authoring process. Some
other efforts were made for the design of SMIL2.0 player
(Shin and Shin, 2002; Hieda et al., 2003). However, none
of the above efforts provide an effective way of modeling
temporal behavior of SMIL2.0 and propose an efficient
data-retrieving mechanism as in this paper.

7. Conclusion and future work

In this paper, modeling of the non-deterministic syn-
chronization behaviors in SMIL2.0 presentations has been
proposed. The proposed model namely Extended Real-
Time Synchronization Model (E-RTSM) is the extension
of our previous work for SMIL1.0 modeling. We propose

the converting mechanism of the temporal relationship in
SMIL2.0 to E-RTSM. Moreover, one application of E-
RTSM-based modeling, the design of the just-in-time
(JIT) data-retrieving engine for SMIL2.0 documents, is
also presented. To cope with the users’ random behavior
in viewing SMIL2.0 presentations, we propose the idea of
the run-time error compensation for data retrieving. Imple-
mentation of the proposed modeling technique as well as
the JIT data-retrieving engine has been finished. The per-
formance measurements have demonstrated that by com-
bining the worst-case estimation of the playback time at
parsing stage and error compensation at run-time, the pro-
posed JIT data-retrieving engine outperforms the other two
data-retrieving schemes. The future work of this paper
includes modeling and handling of other complicated tim-
ing features in SMIL2.0 such as the hexcli element, the hpri-

orityClassi element, etc.
The contributions of the research in the paper are listed

as follows:

(1) E-RTSM is proposed for modeling non-deterministic
as well as deterministic temporal relationship among
multimedia objects.

(2) The converting algorithm of SMIL2.0 synchroniza-
tion relationship to E-RTSM is proposed to provide
an easier and systematic way for dealing with the
temporal relationship of the objects in a SMIL2.0
presentation.

(3) The application of E-RTSM-based modeling in
SMIL2.0 data retrieving is proposed. Mechanisms
of calculating the playback time as well as the request
time for objects in a presentation are presented in the
paper.

(4) The feasibility and better performance of the pro-
posed just-in-time policy for data retrieving have
been proved by system implementation and perfor-
mance measurements.

References

Bolliger, J., Gross, Th., 1999. Bandwidth modelling for network-aware
applications. In: Proceedings, IEEE INFOCOM , pp. 1300–1309.

Bulterman, D.C.A., 2001. SMIL 2.0 part 1: Overview, Concepts, and
Structure. IEEE Multimedia 8 (4), 82–88.

Bulterman, D.C.A., 2002. SMIL 2.0. 2. Examples and Comparisons. IEEE
Multimedia 9 (1), 74–84.

Chang, A.Y., 2004. Design of an intelligent distributed multimedia
presentation system using temporal algebra and SMIL. In: Proceed-
ings, IEEE International Conference on Multimedia and Expo
(ICME), pp. 2211–2214.

Chung, S.M., Pereira, A.L., 2005. Timed petri net representation of SMIL.
IEEE Multimedia 12 (1), 64–72.

Chung, S.M., Pereira, A.L., 2003. Timed petri net representation of the
synchronized multimedia integration language (SMIL) of XML. In:
Proceedings, International Conference on Information Technology:
Coding and Computing (ITCC), pp. 711–716.

Courtiat, J.-P., Santos, C.A.S., Lohr, C., Outtaj, B., 2000. Experience with
RT-LOTOS, a temporal extension of the LOTOS formal description
technique. Computer Communications 23 (12), 1104–1123.

1154 C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155

Aut
ho

r's

pe
rs

on
al

co

py

Deng, L.Y., Chen, R.-X., Chang, R.-C., Huang, T.-S., 2002. Adaptive
content model for multimedia presentation. In: Proceedings, First
International Symposium on Cyber Worlds, pp. 209–216.

Hieda, S., Saida, Y., Chishima, H., Sato, N., Nakamoto, Y., 2003. Design
of SMIL browser functionality in mobile terminals. In: Proceedings,
6th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 143–146.

Huang, Y.C., Lu, C.S., Wu, H.K., 2004. Reliable available bandwidth
estimation based on distinguishing queuing regions and resolving false
estimations. In: Proceedings, IEEE Global Telecommunications Con-
ference (GLOBECOM), pp. 4081–4086.

Lai, K., Baker, M., 1999. Measuring Bandwidth. In: Proceedings, IEEE
INFOCOM, pp. 235–245.

Little, T.D.C., Ghafoor, A., 1989. Synchronization and storage models for
multimedia objects. IEEE Journal of Selected Area in Communica-
tions 8 (3), 413–427.

Liu, Q., Hwang, J.N., 2003. End-to-end Available bandwidth estimation
and time measurement adjustment for multimedia QOS. In: Proceed-
ings, IEEE International Conference on Multimedia and Expo
(ICME), pp. III-373-6.

Manvi, S.S., Venkataram, P., 2006. Agent based synchronization scheme
for distributed multimedia applications. Journal of Systems and
Software 79, 701–713.

Prasad, R., Dovrolis, C., Murray, M., Claffy, K., 2003. Bandwidth
estimation: metrics, measurement techniques, and tools. IEEE Net-
work 17 (6), 27–35.

Rogge, B., Bekaert, J., Van de Walle, R., 2004. Timing issues in
multimedia formats: review of the principles and comparison of
existing formats. IEEE Transactions on Multimedia 6 (6), 910–924.

Sampaio, P.N.M., Santos, C.A.S., Courtias, J.P., 2000. About the
semantic verification of SMIL documents. In: Proceedings, IEEE Inter-
national Conference on Multimedia and Expo (ICME), pp. 1675–1678.

Shin, Dongkyoo, Shin, Dongil, 2002. Design and implementation of the
SMIL (synchronized multimedia integration language) Player. IEEE
Transactions on Consumer Electronics 48 (3), 575–578.

Synchronized Multimedia Integration Language, 1998. (SMIL) 1.0
Specification, W3C Recommendation, June 1998. Available from:
<http://www.w3c.org/TR/REC-smil>.

Synchronized Multimedia Integration Language, 2001. (SMIL) 2.0
Specification, W3C Recommendation. Available from: <http://
www.w3.org/TR/smil20>.

Yang, C.C., Huang, J.H., 1996. A multimedia synchronization model and
its implementation in transport protocols. IEEE Journal of Selected
Area in Communications 14 (1), 212–225.

Yang, C.C., Yang, Y.Z., 2004. Design and implementation of the just-in-
time retrieving policy for schedule-based distributed multimedia
presentations. Journal of Systems and Software (SCI) 71 (1-2), 49–
63. Available from: <http://www.csie.ncnu.edu.tw/~ccyang/Publica-
tion/JSS2004.pdf>.

Yang, C.C., Tien, C.W., Wang, Y.C., 2003a. Supporting VCR-like
operations in SMIL2.0 players. In: Proceedings, IEEE International
Conference on Multimedia and Expo (ICME), vol. 2, 6–9 July 2003,
pp. 761–764.

Yang, C.C., Tien, C.W., Wang, Y.C., 2003b. Modeling of the non-
deterministic synchronization behaviors in SMIL2.0 documents. In:
Proceedings IEEE International Conference on Multimedia and Expo
(ICME), vol. 3 6–9 July 2003, pp. 265–268.

Yang, C.C., Chu, C.K., Wang, Y.C., 2004a. Dividable dynamic timeline-
based authoring for SMIL2.0 presentations. In: Proceedings, IEEE
International Conference on Multimedia and Expo (ICME), 27–30
June 2004.

Yang, C.C., Wang, Y.C., Chu, C.K., 2004b. Reuse of SMIL2.0 scripts in
dividable dynamic timeline-based authoring. In: Proceedings, IEEE
International Conference on Multimedia and Expo (ICME), 27–30
June 2004.

Yu, H., He, Z., Gao, S., Deng, Y., 2002. Modeling and analyzing SMIL
documents in SAM. In: Proceedings, 4th International Symposium on
Multimedia Software Engineering, pp. 132–139.

C.-C. Yang et al. / The Journal of Systems and Software 80 (2007) 1142–1155 1155

