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Abstract

In order to provide the smooth playback of a distributed multimedia presentation, the object-retrieving engine for the player

must fetch each object before its playback time. In this paper, a smart object-retrieving engine is proposed, which adopts a retrieving

policy named the just-in-time policy. The policy expects the retrieval process of an object to finish right before the playback time of

the object to achieve a better buffer utilization and network bandwidth efficiency. The proposed object-retrieving engine focuses on

SMIL1.0-based multimedia presentations. By converting the synchronization relationship of objects in the SMIL1.0 document to

Real-Time Synchronization Model, which simplifies the handling of the synchronization relationship, and considering the end-to-

end bandwidth as well as the user interactions, the object-retrieving engine determines the object request time for each object. The

engine issues the request to fetch each object for the ongoing presentation at the object request time, and provides the player with

proper media objects. The feasibility and better performance of the proposed just-in-time retrieving policy had been proved by

performance measurements of system implementation.

� 2002 Elsevier Inc. All rights reserved.
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1. Introduction

With the development of high-speed networking and

computer technologies, multimedia information systems

like the distributed multimedia presentation (Shih and

Davis, 1997; Moreno and Mayer, 1999; Liew et al.,
1999; Bertino et al., 2000; Palacharla et al., 1997; Car-

neiro et al., 1999) are becoming more accessible to a

variety of audiences. The distributed multimedia pre-

sentation is concerning with viewing a presentation via

the network. The presentation system should provide

VCR-like functions, such as play/stop, pause/restart, fast

forward/backward, and sliding, to support user interac-

tions. Some or all the media objects in the presentation
could be somewhere in the network instead of the local

site. Issues for the distributed multimedia presentation
*Corresponding author. Tel.: +886-49-910960-4131; fax: +886-4-

211-6689.

E-mail address: ccyang@csie.ncnu.edu.tw (C.-C. Yang).

0164-1212/$ - see front matter � 2002 Elsevier Inc. All rights reserved.

doi:10.1016/S0164-1212(02)00139-5
include: the overall design of the system (Shih and Da-

vis, 1997; Moreno and Mayer, 1999; Liew et al., 1999;

Bertino et al., 2000), the scheduling (retrieving) of the

objects and resource management under the network

environment (Palacharla et al., 1997; Carneiro et al.,

1999; Hwang and Prabhakaran, 2000), the mechanisms
for dealing with the temporal relationship (synchroni-

zation) of objects in the presentation (Jeong et al., 1997;

Huang and Wang, 1998; Cruz and Mahalley, 1999; Song

et al., 1999; De Lima et al., 1999), the supporting of the

user interactions (Bertino et al., 2000; Huang et al.,

1998; Yoon and Berra, 1998; Jeng et al., 1999), etc.

The common objective of the issues for the distrib-

uted multimedia presentation is to provide a smooth
playback for viewing the presentation. Since the objects

in a multimedia presentation may reside in remote data

servers, the critical problem is to guarantee that tem-

porally related objects from different data servers and

different network channels will play synchronously at

the client site––even with random user interactions. The
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quality of the presentation depends on the ability of the

player in dealing with the network behavior and user

interactions. More specifically, when a presentation is

ongoing, the object-retrieving engine for the player (or

the player itself) should retrieve proper media objects

before the object’s playback time according to the syn-
chronization relationship of the presentation. Hence, the

object-retrieving engine plays an important role on the

quality of the presentation.

Two extreme policies for object retrieving could be

adopted. First, retrieve all objects before starting the

presentation, or second, do not make the request to

retrieve the object until the object’s playback time. The

first policy is called the pre-loading policy, and the sec-
ond policy is called the passive-loading policy in the

paper. The pre-loading policy guarantees the smooth

playback in the cost of a long initial delay and a large

buffer for all objects in the presentation. Moreover, since

the viewer could activate hyperlinks or VCR-like func-

tions in an ongoing presentation, it is improper to pre-

fetch all media objects in advance. Minimal buffer is

required for the passive-loading policy, but it introduces
gaps between the request time and the finish time of

object retrieval because of the network delay. It implies

that the smooth playback is impossible for the passive-

loading policy.

The proposed object-retrieving engine adopts a better

policy that is called the just-in-time policy. The policy

expects the retrieval process for an object to be finished

right before the playback time of the object so that the
player could continue the presentation smoothly. Under

such policy, the object-retrieving engine only buffers

necessary objects for the smooth progress of the pre-

sentation, thus it has a better buffer utilization and

network bandwidth efficiency.

The main problem for the just-in-time object-re-

trieving policy is the computation (estimation) of the

request time for object-retrieval made by the object-re-
trieving engine. The request time for retrieving an object

is called the object request time in the paper. Two factors

need to be considered in the computation of the object

request time: (1) the playback time for the object and (2)

the total time for retrieving the object via the network.

The playback time for each object depends on the

temporal relationship of the objects in the presentation

and the user interactions. The total time for retrieving
the object from the remote server depends on the size of

the object and the effective network bandwidth from the

server to the client. Under the just-in-time retrieving

policy, the object request time could be estimated as the

playback time of the object minus the total time for

retrieving the object.

Before we further discuss the mechanisms for sup-

porting the just-in-time policy, the representation of the
multimedia presentation should be addressed. In order

to compose a multimedia presentation, a method (e.g. a
script language) is necessary to specify the spatial rela-

tionship and the temporal (synchronization) relation-

ship for the objects in the presentation. Different

multimedia presentation systems usually have different

formats of presentation. However, it is better to adopt a

popular language as the format of the multimedia pre-
sentation (Chang, 1999). From the popularity point of

view, SMIL (Synchronized Multimedia Integration Lan-

guage) (W3C, 1998; W3C, 2001) seems to be a good

candidate. SMIL was developed by the WWW Consor-

tium (W3C) to address the lack of HTML for multi-

media over WWW. It provides an easy way to compose

multimedia presentations. With the efforts of W3C,

SMIL is becoming a popular language in authoring
multimedia presentations, and it is currently supported

by the newest versions of the commercial browsers.

This paper focuses on the SMIL-based presentations

and proposes proper mechanisms for the just-in-time

retrieving policy. Currently, two versions of SMIL

specification had been proposed by W3C: SMIL1.0

(W3C, 1998) and SMIL2.0 (W3C, 2001). The SMIL1.0

model is primarily a scheduling model, but with some
flexibility to support continuous media with unknown

duration. SMIL2.0 extends SMIL1.0 and introduces

event-based activation or termination to let users define

a dynamic activation path. Because of dynamic activa-

tion of elements, a SMIL2.0 presentation’s entire timing

might be changed at the run-time, which makes it diffi-

cult to implement the just-in-time retrieving policy.

Therefore, the proposed object-retrieving engine deals
with schedule-based (SMIL1.0) presentations only. Re-

search of object retrieving for event-based (SMIL2.0)

presentations is left as the future work.

The object-retrieving engine has to handle the syn-

chronization relationship of the objects in the SMIL

script. In order to deal with the synchronization rela-

tionship efficiently during the parsing process for the

SMIL script, a synchronization model (Little and
Ghafoor, 1989; Qazi et al., 1993; Yang and Huang,

1996; Lin et al., 1998; Prabhakaran and Raghavan,

1993; Huang et al., 1998; Yoon and Berra, 1998; Jeng

et al., 1999), which provides a systematic view of the

synchronization relationship, is helpful for the object-

retrieving engine. In the literature, DEFSM (Dynamic

Extended Finite State Machine) (Huang et al., 1998) is

proposed to model the synchronization relationship for
interactive multimedia presentations. However, the ap-

proach requires two models, an ‘‘actor’’ DEFSM and a

‘‘synchronizer’’ DEFSM, for an interactive multimedia

presentation, and is hence complicated.

A more compact and Petri-net based model namely

OCPN (Object Composition Petri Net) (Little and

Ghafoor, 1989; Qazi et al., 1993) was proposed to model

the synchronization relationship among media objects.
Extensions of OCPN for supporting user interactions

(Yoon and Berra, 1998; Jeng et al., 1999) were also
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proposed. However, we had shown that OCPN or other

Petri-net based models are not suitable for real-time

network applications, and instead Real-Time Synchro-

nization Model (RTSM) was proposed (Yang and Hu-

ang, 1996). Moreover, the synchronization behaviors

that could be specified by SMIL1.0 make RTSM more
suitable than Petri-net based models. For example,

SMIL allows the author to set the explicit beginning

time, duration, or end time for an element in the pre-

sentation. RTSM could easily model this kind of the

synchronization behavior, but OCPN could not.

Therefore, RTSM is adopted to model the synchroni-

zation relationship of the multimedia presentation

scripted by SMIL.
To sum up, the proposed object-retrieving engine first

parses the input SMIL document to extract and to

represent the synchronization relationship of the objects

in the presentation by RTSM. Next, the object request

time for each object is determined by considering the

user interaction, the playback time of the object, and

effective network bandwidth to retrieve the object. The

request for retrieving the object is then issued by the
object-retrieving engine at the object request time.

The remainder of the paper is organized as follows.

First, we make a brief survey for SMIL1.0 and RTSM in

Section 2. The overview of the process for the object-

retrieving engine is presented in Section 3. The conver-

sion of the synchronization relationship of SMIL to

RTSM during the parsing process is presented in Section

4. The calculation of the object request time is explained
in Section 5. In Section 6, the implementation and some

results of performance measurement for the proposed

object-retrieving policy are presented. Finally, Section 7

concludes this paper.
Fig. 1. An example of RTSM.
2. Previous work

2.1. Survey of SMIL1.0

As mentioned in Section 1, SMIL was developed by

W3C to address the lack of HTML for multimedia over

WWW. With the introduction of SMIL, Web multime-

dia creators have a new tool for building time-based

multimedia presentations that combine audio, video,

images, and text. The proposed SMIL standard defines
an XML-based language that allows control over what,

where, and when of media elements in a multimedia

presentation with a simple clear markup language sim-

ilar to HTML.

In other words, SMIL could be used to describe both

the spatial relationship and the temporal relationship of

a multimedia presentation. The spatial relationship is

concerning with the visual layout of media objects in the
presentation, while the temporal relationship is con-

cerning with timing control of media objects. The ele-
ments for spatial relationship in SMIL1.0 include the

hlayouti element and the hregioni element. The hlayouti
element determines how the elements in the document’s

body are positioned. The hregioni element controls the

position, the size, and scaling of media object elements.

The synchronization elements in SMIL1.0 for the
temporal relationship include the hseqi element, the

hpari element, and the class of media object elements

such as himgi, hvideoi, haudioi, and htexti. The hseqi ele-
ment defines a sequence of elements in which elements

play one after the other. The hpari element defines a

simple parallel time grouping in which multiple elements

can play back at the same time. Both hseqi and hpari
allow the nested structure that means the children ele-
ment of them could be any of the synchronization ele-

ments. The media object elements allow the inclusion of

media objects into an SMIL presentation. Media objects

are included by reference (using a URI).

Besides, some synchronization related attributes such

as ‘‘begin’’, ‘‘dur’’, and �end’’ could be associated with

these synchronization elements. The ‘‘begin’’ attribute

specifies the time for the explicit begin of an element.
The ‘‘end’’’ attribute specifies the explicit end of an ele-

ment. The ‘‘dur’’ attribute specifies the explicit duration

of an element.

2.2. Survey of real-time synchronization model

RTSM (Yang and Huang, 1996) was proposed to

address the lack of Petri-net based models for dealing
with real-time synchronization. The elements in RTSM

include place, token, and transition as in OCPN (Little

and Ghafoor, 1989). However, there are two kinds of

places in RTSM, regular places and enforced places. A

different firing rule for enforced places is defined. The

rule specifies that once an enforced place becomes un-

blocked (in other words, the related action with the

place is completed), the transition following the place
will be immediately fired regardless the states of other

places feeding the same transition.

An example of RTSM is shown in Fig. 1 in which a

single circle is for the regular place, a double circle is for

the enforced place, and a bar is drawn for the transition.
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The RTSM in Fig. 1 requires that audio segment audio1,

the video clip video1, and the text data text1 be played

simultaneously. Since audio1 is an enforced placed,

transition T1 is fired right after audio1 is finished, no

matter if video1 or text1 is finished or not. After firing

transition T1, image1 is displayed for 5 s then transition
T2 is fired. Finally, audio2 is played for 10 s after tran-

sition T2 fires. Note that the enforced place of ‘‘5 s’’ in

the figure is not a media object but a virtual medium

that is called Time Medium (Yang and Huang, 1996).

The time medium is used to represent time duration.
3. Overview of the object-retrieving process

The object-retrieving process is responsible for re-

trieving proper media objects and dealing with user ac-

tions for the presentation. The operation model of the

proposed object-retrieving engine is illustrated in Fig. 2.

The object-retrieving engine first accepts the SMIL script

from the player, and converts the synchronization rela-

tionship to RTSM. By analyzing the RTSM model and
collecting object related information from data servers,

the playback duration for each object under normal play

mode is calculated. The object-retrieving engine then

uses the obtained playback duration of each object as a

base to handle the user actions and determines the object

request time for objects. Proper objects are retrieved and

then delivered to the player by the object-retrieving en-

gine according to the object request time.
Functions of user interactions supported by the pro-

posed object-retrieving engine include play, stop, pause/

restart, fast forward, fast backward, and sliding. To de-
Fig. 2. Overview of the object-retrieving process.
fine the user interactions precisely, some parameters are

associated with the user actions as shown in Fig. 3. For

example, three parameters should be passed to the

object-retrieving engine for the fast forward mode:

CurrentPoint, JumpPeriod, and PlaybackPeriod. Cur-

rentPoint is used to indicate the time point within the

overall presentation time at which the user action is

made. It is a relative value timed from the start of the

presentation, and it means fast forwarding of the pre-

sentation should be started from the point indicated by

CurrentPoint. JumpPeriod and PlaybackPeriod are used

to define how does the player achieve the fast forward/

backward operation as explained in the following.
Since it is impossible to speed the presentation of a

multimedia document physically as in the VCR system,

we need a new way to define fast forward/backward

operation. We define JumpPeriod as the period to be

skipped in fast forward/backward operation and Play-

backPeriod as the period to be played. By using these

two parameters, we could achieve the functionality of

fast forward/backward, and the play speed of the pre-
sentation becomes ðJumpPeriod þ PlaybackPeriodÞ=
PlaybackPeriod. The playback patterns for fast forward

and fast backward are shown in Fig. 4 in which the only

difference between fast forward and fast backward is the

reverse ongoing directions. As for the sliding action, the

object-retrieving engine only needs to know the next

playback point, which is denoted by NextPlayback-

Point, so that it could retrieve proper objects.
When some user action is made, the object-retrieving

engine tries to locate the objects that should be played

next under the new mode. However, there are always

cases that only part of an object needs to be played, such

as a sub-segment of an audio object or a sub-clip of a

video object. So it is assumed that data servers have the

ability of sub-sampling a continuous object like audio or

video, and the object-retrieving engine only retrieves
necessary part of the object instead of retrieving the

whole object.
4. Converting SMIL to RTSM

In this section, we present the algorithm for con-

verting the input SMIL script to RTSM. Since the
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temporal relationship is the main concern of RTSM,
only the synchronization elements in SMIL1.0 are ex-

amined. There are three kinds of synchronization ele-

ments to be converted: the hseqi element, the hpari
element, and the class of media object elements such as

himgi, hvideoi, haudioi and htexti. Besides, some syn-

chronization related attributes such as ‘‘begin’’, ‘‘dur’’,

and ‘‘end’’ could be associated with these synchroniza-

tion elements. We assume that the player has checked
the syntax of the SMIL document, so the object-re-

trieving engine only performs necessary conversion.

4.1. Converting the hseqi element

The hseqi element defines a sequence of elements in

which elements play one after the other. The children

elements of the hseqi element could be any of the syn-
chronization elements such as hseqi, hpari, or the media

object elements, so the conversion is a recursive proce-

dure. Since the children of a hseqi element form a tem-

poral sequence, we concatenate each child of hseqi one
by one in RTSM as illustrated in Fig. 5. Note that there

are virtual places (denoted by the dashed circle) in the

figure. They are used to maintain the consistency of

RTSM, since the arc could only be the link between a
transition and a place. In fact, the virtual place is a

regular place that maps to the time medium with zero

duration.

4.2. Converting the hpari element

The hpari element defines a simple parallel time

grouping in which multiple elements can play back at
the same time. Thus, all children of hpari should be

within the same pair of transition (Ts, Te) as illustrated in

Fig. 6. There are three variations for hpari since a special
Fig. 5. Convert the hseqi element to RTSM.
attribute, ‘‘endsync’’, could be associated with hpari. The
‘‘endsync’’ attribute controls the end of the hpari ele-

ment, as a function of children. Legal values for the

attribute are ‘‘last’’, ‘‘first’’, and ‘‘id-ref’’.

The value of ‘‘last’’ requires hpari to end with the last

end of all the child elements, and the corresponding

RTSM is shown in Fig. 6(a), in which transition Te could
not be fired unless all children end. The value of ‘‘first’’

requires hpari to end with the earliest end of all the child
elements. Therefore, we should change the places be-

tween each child element and transition Te to virtual

enforced places as illustrated in Fig. 6(b) so that the child

that ends first will fire transition Te. A virtual enforced

place is an enforced place that maps to the time medium

with zero duration. The value of ‘‘id-ref’’ requires hpari
to end with the specified child. So we change the place

between the specified child and transition Te to the vir-
tual enforced place as shown in Fig. 6(c).

Other synchronization attributes, such as ‘‘begin’’,

‘‘end’’, and ‘‘dur’’, could also be associated with hseqi
and hpari, but the conversion is similar to that in the

media object elements that we present in the following.
4.3. Converting the media object elements

The media object elements allow the inclusion of

media objects into a SMIL presentation. Media objects

are included by reference (using a URI). One media

object element naturally represents a regular place in

RTSM. However, the attributes associated with the el-

ement require some more complex conversion. We ex-

amine and convert attributes ‘‘begin’’, ‘‘end’’, and ‘‘dur’’

respectively in the following.
4.3.1. Converting the ‘‘begin’’ attribute

This attribute specifies the time for the explicit begin

of an element. Two types of values could be contained in

the attribute: delay-value and event-value. A delay value

is a clock-value to postpone the playback time of the

element by the delay value. Therefore, one enforced

place representing the delay time with the specified du-
ration is added in front of the element as illustrated

in Fig. 7(a). The event-value requires the element be-

gin when a certain event occurs. According to the



Fig. 8. Effect of ‘‘end’’ attribute on RTSM.

Fig. 7. Effect of ‘‘begin’’ attribute on RTSM.

Fig. 6. Convert the hpari element to RTSM.
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specification of SMIL1.0, the element X generating the

event must be ‘‘in scope’’, in other words, X must be a
sibling of the element that contains the ‘‘begin’’ attrib-

ute. There are two variations for the event-value, which

is shown in Fig. 7(b) and (c) respectively.

In Fig. 7(b), the ‘‘id(X)(n s)’’ value of ‘‘begin’’ at-

tribute means that element Obj begins after its sibling X
has begun for n seconds. So one enforced place repre-

senting the delay time with value of summation of ‘‘X ’s

begin time’’ and ‘‘n seconds’’ is added in front of Obj

element. Actually, from the semantic point of view, the

case in the Fig. 7(b) is only valid when elements X and

Obj are child elements in a hpari element. The other

value of event-value for ‘‘begin’’ attribute is ‘‘id(X)

(end)’’, which means the Obj element begins right after

element X ends. The case is actually the function of

hseqi. Therefore, the value is only valid when X is the

direct predecessor of the element Obj in a hseqi element,
and it introduces nothing to RTSM.
4.3.2. Converting the ‘‘end’’ attribute

This attribute specifies the explicit end of an element.
There are also three possible values for the attribute as

in the ‘‘begin’’ attribute. We illustrate the conversion of

them in Fig. 8. In Fig. 8(a), a clock value represents the

end time from the original timebase of the element. So

one enforced place with the clock value is added between

the original start transition and the end transition. In

Fig. 8(b), the ‘‘id(X)(n s)’’ value of ‘‘end’’ attribute

means that element Obj ends when its sibling X has
begun for n seconds. Therefore, there is a enforced place

between the actual start transition of X and the end

transition of Obj. Finally, Fig. 8(c) illustrates the case of

value ‘‘id(X)(end)’’, which means element Obj must end

when element X ends.

4.3.3. Converting the ‘‘dur’’ attribute

This attribute specifies the explicit duration of an ele-
ment. Therefore, the value of the ‘‘dur’’ attribute, which
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Fig. 11. A SMIL code snippet.
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is a clock value, forms an enforced place between the

actual start transition and the end transition. We illus-
trate the effect of the attribute in Fig. 9.

4.4. Hyperlinks in SMIL

As specified in the SMIL1.0 specification, the hyper-

link element hai is transparent when playing the pre-

sentation until the user activates the link and starts a

new presentation. Thus, only child elements of the ele-
ment hai are converted to RTSM, which is the same as

previous sections.

4.5. Simplifying the obtained RTSM

As mentioned in the above section, some virtual

(enforced) places are added in the RTSM during the

converting process. However, there are some cases of
RTSM that could be simplified by applying three rules,

which are shown in Fig. 10. First, if the only input of a

transition is a media place and the only output of the

transition is a virtual place, we could naturally replace

the case with the media place only since the virtual place

is actually dummy (Fig. 10(1)). Second, if the only

output of the transition in rule (1) is a virtual enforced

place, it means the firing of the media place will enforce
to fire the following transition of the virtual enforced

place. We could replace the case by changing the media

place to an enforced one as shown in Fig. 10(2). Third, if

there is only one virtual place between two transitions,
Fig. 10. Three rules to simplify RTSM.
the two transitions could be combined into one transi-

tion as shown in Fig. 10(3).

4.6. An example for the conversion

Fig. 11 shows a sample SMIL code snippet, in which

only temporal information is displayed. The initial

RTSM right after the converting process is shown in

Fig. 12 and the simplified RTSM for the example is

shown in Fig. 13.

SMIL1.0 also introduced the ‘‘repeat’’ attribute,

which is used to repeat a media element or an entire time
container, such as hseqi or hpari. With the presence of

the ‘‘repeat’’ attribute, the RTSM model for the element

is copied for the number of times specified by the value

of the ‘‘repeat’’ attribute.
5. Determine the object request time

The object request time indicates the time to issue the

request to retrieve the object. However, the object

playback time depends on the play mode, which is dy-

namically activated by the user. The object request time

thus needs to be re-computed each time the user action

is made. Before computing the object request time for

the user action, the object-retrieving engine has to know

the original playback duration for each object under
normal play mode (i.e. play speed ¼ 1). The original

playback duration is then used as a base to compute the

object request time as well as the new playback time for

each object under specific user action. The original

playback duration is computed by traversing the RTSM

obtained from the converted process mentioned in Sec-

tion 4.
5.1. Compute the original playback duration

The playback time for an object is actually the firing

time of the starting transition, and the end time of the
object is the firing time of the ending transition of the

object in RTSM. To compute the firing time for each



Fig. 13. Simplified RTSM for the sample SMIL snippet.
Fig. 14. Reduced RTSM for the sample SMIL snippet.

Fig. 15. Determine the firing time for transition Tx.

Fig. 12. RTSM for the sample SMIL snippet.
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transition, we have to traverse the RTSM. Since there is

usually more than one place that feeds to a transition,

the behavior of a transition depends on the type of

places that feed into it. If a transition is fed by some

enforced places, the enforced places will dominate the

behavior of the transition. In other words, if a transition

is fed by some enforced places, the other regular places

cannot affect the firing time of the transition at all.
Therefore, we reduce the RTSM by removing the reg-

ular places that feed to a transition with enforced places.

The reduced RTSM for the example in Fig. 13 is shown

in Fig. 14.

The firing time for each transition is then computed

by traversing the reduced RTSM. There are only two

possibilities for one transition in the reduced RTSM: (1)

places that feed to the transition are all enforced places,
or (2) places that feed to the transition are all regular

places. For case (1), the firing time of the transition is

the minimal value of ‘‘the firing time of the preceding

transition’’þ ‘‘the duration of the following place’’, which

is illustrated in Fig. 15(a). The firing time of the tran-

sition for case (2) is instead the maximum value of its

predecessors as illustrated in Fig. 15(b). The duration of

each place depends on the type of the media object. For
an enforced place of time medium, the duration of the

place is the value of the time duration. For static media

objects, such as himgi and htexti, the duration of the
place is zero. For continuous media object like haudioi
and hvideoi, the duration of the place is the implicit

duration of the object that is provided by the data ser-

ver. Since the objects stored in a data server are all pre-

orchestrated, it is easy for the data server to obtain the

implicit duration of a continuous object.

After the traversing process mentioned above, there

may be some cases of inconsistency that the firing time
of a transition is later than the firing time of its following

transition. The reason is that removing the regular pla-

ces of a transition with some enforced places in the re-

duction stage only affects the firing time of the following



Fig. 16. The firing time for each transition for the sample SMIL

snippet.

Fig. 17. The object information table.
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transitions. However, the enforced firing of a transition

should also make all the preceding transitions fire si-

multaneously. Thus, the solution to remove the incon-

sistency is to replace the firing time of a transition with

the firing time of its following transition while the firing
time of the transition is later than that of its following

transition. Assuming that the intrinsic duration of the

audio object URI-1 in Fig. 14 is 10 s, the firing time of

each transition for the example is shown in Fig. 16.

5.2. Calculate the object request time for user actions

The objects that should be retrieved (played) depend
on the user action since different user actions result in

different playback patterns and different playback times

of objects. In this section, the mechanism to determine

the proper object (or part of an object) to be played as

well as the object request time for each user action is

presented.

As mentioned in Section 5.1, the data server provides

the intrinsic duration of each object to determine the
original playback duration. Moreover, in order to de-

termine the proper objects to play and the object’s

playback time as well as the object request time under

possible user actions, the object-retrieving engine has to

collect other information for each object from the data

server. When the object-retrieving engine accepts the

SMIL script, it sends probe packets to all data servers

for asking the object information, which includes object
size, estimated bandwidth, and play rate.

The data server estimates the bandwidth for the ob-

ject to the object-retrieving engine. The estimated

bandwidth is used to estimate the delay of an object from

the server to the client. There are two factors that affect

the item: (1) the transmission rate of the server for the

requested object, and (2) the effective network band-

width of the path from the server to the client. The
transmission rate depends on the load of the server and

the capacity of the outgoing link. The effective network

bandwidth could be measured by some bandwidth

measuring mechanisms (Bolliger and Gross, 1999; Lai

and Baker, 1999; Paxson, 1999). The estimation of the

end-to-end bandwidth for retrieving an object is beyond
the scope of the paper. If the server cannot provide in-

formation about the estimated bandwidth, it should

inform the client to perform the estimation by itself.

The play rate, which is only valid for continuous

objects, indicates the amount of data that is played

within unit time for a continuous object and is used for
locating any part of the object. We denote the object size

for object URI-i as SizeURI-i, the estimated bandwidth as

EstBWURI-i, and the play rate as PlayRateURI-i.
In addition to object related information, the object-

retrieving engine also has to estimate the time for the

request packet arrived to the data server. We use the

round trip delay, denoted by RTDelayURI-i as the esti-

mated value for the delay of the request packet to the
server. Thus, the total time to retrieve an object is

the summation of the delay of the request packet and

the transmission time of the object from the data

server to the client site. That is, the retrieving time for

object URI-i is estimated as ðSizeURI-i=EstBWURI-iÞþ
RTDelayURI-i. The object-retrieving engine then fills in

the object information table, which is shown in Fig. 17, as

a reference for computing the object request time.

5.2.1. Play action

For each action made by the user, the player passes

the action ID and associated parameters to the object-

retrieving engine as presented in Section 3. CurrentPoint

is the only parameter that is passed to the engine, and it

is a time point within the total presentation time to in-

dicate the starting point of the playback. The default
action for viewing a presentation should be the play

action with CurrentPoint ¼ 0 s, i.e. the beginning of the

presentation.

The original playback duration in the object infor-

mation table is used as a reference to identify the objects

that should be played for the user action. Note that the

values of the original playback duration (PBTimeURI-i,
PBEndURI-i) for an object in the table are relative to the
beginning (CurrentPoint ¼ 0 s) of the presentation.



Fig. 18. An example for the play action.

Fig. 19. Illustration for locating a sub-object.
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Therefore, objects with original playback time later than

CurrentPoint should be played for the play action, and

the new playback time for the object is PBTimeURI-i �
CurrentPoint, which is denoted by NewPBTimeURI-i. In

other words, the object should be played NewPBTimeURI-i
seconds later after starting the playback for the new user

action. An example for illustration of the new playback
time for the play action is shown in Fig. 18. Finally, the

object request time is computed as NewPBTimeURI-i �
ðSizeURI-i=EstBWURI-i þ RTDelayURI-iÞ.

Because of the random user actions, there are cases

that CurrentPoint does not align to the PBTimeURI-i of an
object but within the original playback duration of the

object. In such case, the new playback time for the object

becomes 0 s (i.e. beginning of the new playback) and the
retrieving pattern depends on the type of the object. For

static objects like images and text, since they are not

temporally divisible, the object-retrieving engine should

still retrieve the whole object. For continuous objects like

video and audio, only part of the object should be re-

trieved. From time point of view, the retrieved part of the

continuous object, which is called sub-object, is related to

the new playback duration for the object. The new
playback duration is actually from CurrentPoint to

PBEndURI-i. For instance, the new playback duration for

URI-1 (audio) and URI-2 (video) in Fig. 18 is (6 s, 10 s).

The size for the sub-object denoted by SubSizeURI-i is

computed as ðPBEndURI-i�CurrentPointÞ � PlayRateURI-i.
Therefore, the retrieving time for the sub-object becomes

ðSubSizeURI-i=EstBWURI-iþRTDelayURI-iÞ. An illustration

for the calculation of a sub-object is shown in Fig. 19.
The object request time for the sub-object is then com-

puted as NewPBTimeURI-i�ðSubSizeURI-i= EstBWURI-iþ
RTDelayURI-iÞ.

The calculation of the object request time is based on

the NewPBTime for the object. Since the value of

NewPBTime is relative to the starting time of the new

playback for the user action, the object request time is

also relative to the starting time of the playback. A
negative value of the object request time implies that the

request for the object should be issued before the play-
back of the presentation for the user action. Therefore,

when the user action is made, the playback of the pre-

sentation should be delayed by the maximum negative

value of all the object request times, which is the initial
delay for the user action.

5.2.2. Pause/restart

When the user makes the pause action, the object-

retrieving engine stops all the pre-fetching process and

waits for the next user action. The restart action is as-

sumed to follow the pause action to continue the pre-

sentation in play mode. Therefore, the CurrentPoint

parameter associated with the restart action indicates

the next playback point of the presentation. The oper-

ation of the object-retrieving engine is thus the same as

that of the play action.

5.2.3. Fast forward

Two parameters, JumpPeriod and PlaybackPeriod,

define the forwarding pattern and CurrentPoint indi-
cates the starting point of the presentation as mentioned

in Section 3. In order to identify the objects or sub-ob-

jects that should be retrieved under this action, we have

to scan the original playback duration in the object in-

formation table from CurrentPoint to the end of the

presentation. The summation of JumpPeriod and Play-

backPeriod is used as the cycle time to scan the original

playback durations. The overlapping duration of an
object with PlaybackPeriod is the sub-object to be re-

trieved and to be played.

We use the example in Fig. 20 to illustrate the itera-

tive process. The playback duration for each object,

which is derived from the sample SMIL document, is

shown in the upper part of the figure. It is assumed that

the user made the fast forward action while the playback

of the presentation reaches the time point of 6th second,
and JumpPeriod and PlaybackPeriod are 5 and 2 s re-

spectively. Therefore, the duration from 6th to 8th sec-

ond is the first part of the presentation to be played,

13th to 15th second is the next part to be played, and

then 20th to 22nd second, etc., as shown in the figure.

The above time periods are then used to locate the part

of an object to be retrieved, and the pre-fetch timetable

for the fast forward action is set up as shown in Fig. 21.



Fig. 20. An example of fast forward operation.
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Note that in the pre-fetch table in Fig. 21, the sub-object

fields for URI-3 (text) and URI-4 (image) are invalid

since they are static objects, which means the whole

object for URI-3 and URI-4 should be retrieved.
The retrieving time for sub-object URI-i with dura-

tion PlaybackPeriod is calculated as ðPlaybackPeriod �
PlayRateURI-iÞ=EstBWURI-i þ RTDelayURI-i. The new play-

back time for each sub-object depends on the count of

iteration in which the object is scanned, and it is cal-

culated as PlaybackPeriod � IterationCount. The pre-

fetch time (object request time) is then computed as the

new playback time minus the retrieving time of the sub-
object. After setting up the pre-fetch timetable, the ob-

ject-retrieving engine makes requests to retrieve objects

(or sub-objects) according to the pre-fetch time for each
Fig. 21. Pre-fetch timetable.
object. Note that when a new user action is made, the

object-retrieving engine updates the pre-fetch timetable

with the new computed pre-fetch time for each object.

5.2.4. Fast backward

The operation of the object-retrieving engine for the

fast backward action is similar to that of the fast for-

ward action, and the only difference is that the direction

of the scanning process is reverse as shown in Fig. 4.

Computation of the retrieving time and the pre-fetch

time is the same as in the fast forward action. Note that

the object-retrieving engine is only responsible for re-
trieving proper data for the player, so the ability of re-

versing the playback of continuous objects depends on

the player. If the player cannot provide the reverse

playback of the object data, it should just play the re-

trieved data in the normal (forward) direction.

5.2.5. Sliding

When the user uses the slider to change the playback
point of the presentation, the player must determine the

next playback point and passes the value (NextPlay-

backPoint) to the object-retrieving engine. Thus the va-

lue of NextPlaybackPoint indicates the time point of the

presentation to be played. It is assumed that the sliding

action results in the normal playing mode from the new

playback point, so the operation of the object-retrieving

engine is the same as that of the play action.

5.2.6. Discussion

If the data server supports the streaming mechanism

for continuous objects, it is not necessary to retrieve

the whole content of the object before its playback

time. Only the amount of data to support the stream-

ing operation is required. Thus, the transmission time of



Fig. 22. Network environment for the experimental system.
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the object is BufferSizeURI-i=EstBWURI-i, in which

BufferSizeURI-i is the amount of data to buffer. The value

of BufferSizeURI-i depends on the streaming operation

and is not addressed in this paper.

As presented in Sections 5.2.1 and 5.2.3, PlayRateURI-i
for continuous objects provided by the data server is
used to calculate the size (SubSizeURI-i) of the retrieved

sub-object. However, it was assumed that the encoding

scheme for continuous objects (audio/video) generates

constant-bit-rate (CBR) data. For variable-bit-rate

(VBR) encoding schemes, the calculation of the size for

sub-objects depends on the encoding scheme and is thus

more complicated, which is beyond the scope of the

paper.
The object-retrieving engine has to re-compute the

pre-fetch time of objects for each time a new user action

is made, so the computation time of the algorithm to

calculate the pre-fetch time is critical for the perfor-

mance of the object-retrieving engine. The scanning

process for determining the objects to be retrieved and

for computing the pre-fetch time is only one pass for all

objects in the presentation, so the algorithm only takes
linear computation time.

The accuracy of end-to-end bandwidth estimation

affects the performance of the object-retrieving engine as

well as the quality of the presentation. Since the network

behavior is very dynamic, it is impossible to exactly es-

timate the time required to finish the retrieving process

for a media object. Thus, we discuss the impact of the

accuracy of estimated time to finish the retrieving pro-
cess for a media object on the performance of the object-

retrieving engine.

If the estimated time is more pessimistic (bandwidth

is underestimated) than the actual status, the object will

be buffered for some time before its playback time. On

the other hand, if the estimated time is more optimistic

(bandwidth is overestimated) than the actual status (e.g.

network is congested), the presentation will probably be
paused to wait for the object. Furthermore, if the net-

work bandwidth could be reserved in advance by some

booking method, the estimated object request time will

be more precise. Hence, the quality of the presentation

and the buffer utilization will also be improved.
6. Implementation and performance measurement

We have implemented an experimental system for the

feasibility and performance evaluation of the proposed

object-retrieving engine. The network environment for

the experimental system is shown in Fig. 22. There are

two data servers (free web sites) in the system: one is for

providing the audio data, and the other is for providing

Image/HTML data. All the three object-retrieving pol-
icies, pre-loading, passive-loading, and just-in-time are

included in the system for performance comparison. The
performance criterion is the jitters between the playback
time and the arrival time of the object (i.e.

jitter ¼ actual playback time� arrival time). A positive

value of the jitters implies the buffering time for the

object before playback, while a negative value of the

jitters indicates the pause time of the playback to wait

for the object to arrive. Thus, the value of the jitters

closer to zero implies a better performance.

The test SMIL document for performance measure-
ment includes six child elements in the root hseqi ele-

ment and each child element is composed of three

media elements (audio, image, and text) with duration

10 s. That is, there are six audio objects, six image

objects, and six text objects in the 60-s presentation.

The size of the audio objects is 80 K bytes, the size of

the image objects is within the range of 20–40 K bytes,

and the size of the text objects is within the range of
0.5–13 K bytes.

Since the data servers are free web sites that cannot

provide the advanced service like bandwidth estimation,

the object-retrieving engine in the system has to estimate

the bandwidth by itself. For the just-in-time retrieving

policy, the engine measures the average bandwidth from

the data server to the client by requesting some test files

from the server. The EstBW obtained is then used in the
calculation of the object request time as presented in

Section 5. Some of the performance measurements are

displayed in Figs. 23–25 in which the object-retrieving

engine assumed that the play action is enabled after

loading the test SMIL document (CurrentPoint ¼ 0 s).

Figs. 26–28 show the relationship between the estimated

bandwidth and the actual end-to-end bandwidth expe-

rienced by each object under the just-in-time policy.
The pre-loading policy retrieves all the objects before

starting the playback of the presentation, so the later the

playback time of an object (which has a larger ID in the

test SMIL file), the larger jitters (more buffering time)

the object will experience. Therefore, the jitters for the

pre-loading policy form a monotonic ascending curve in

the figures. On the other hand, the jitters for the passive-

loading policy are always negative as shown in the fig-
ures, and the value of the jitters depends on the traffic

condition and the size of the requested object.



Fig. 23. Jitters of audio objects.

Fig. 24. Jitters of image objects.

Fig. 25. Jitters of text objects.

Fig. 26. Estimated BW vs. actual BW for audio.

Fig. 27. Estimated BW vs. actual BW for image.

Fig. 28. Estimated BW vs. actual BW for text.
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Figs. 26–28 show that the actual end-to-end band-

width fluctuates when the object-retrieving engine re-

trieves media objects from the servers, so the measured

average bandwidth for computing the object request

time is imprecise. However, the performance of the just-

in-time policy is still better than that of the other two

policies, which justifies the idea of the just-in-time pol-

icy. Actually, under the same network traffic condition,
the jitters of the just-in-time policy should always be

smaller than those of the other two extreme policies,
which means the better performance for the just-in-time

policy could always be achieved. Some observations for

the impact of the bandwidth estimation on the perfor-

mance of the just-in-time policy are presented in the

following.

The end-to-end bandwidth for audio objects ID 1 and

3–6 in Fig. 26 was underestimated, i.e. the estimated

bandwidth was less than the actual bandwidth, so all the
jitters for these objects in Fig. 23 were above the X-axis
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(i.e. positive values of jitters). On the other hand, the

overestimation of the end-to-end bandwidth for audio

object ID 2 resulted in a negative value of the jitter.

However, no matter how the bandwidth is under- or

overestimated, the jitters tend to be near the X-axis (i.e.

close to zero) in comparing with the other policies. It is
the inherency of the just-in-time policy.

It is worth mentioning that the end-to-end bandwidth

for image objects ID 3–6 were overestimated as dis-

played in Fig. 27, but the jitter for image object ID 6 was

positive. The reason is because the calculation of the

object request time for the just-in-time policy also con-

siders the latency for the request packet to arrive the

server as presented in Section 5.2. The amount for this
latency is estimated as the measured round-trip delay.

Thus, the conservative value of the latency compensates

the effect of the overestimated end-to-end bandwidth.

Similar situations happened in the case of text objects

(Figs. 25 and 28).
7. Conclusion

Distributed multimedia presentation enables the users

to view a multimedia presentation in the distributed

manner, in which the objects of the presentation are

located at remote sites. In order to provide the smooth

playback of the presentation, the object-retrieving en-

gine for the player must fetch each object before its

playback time. In this paper, the just-in-time retrieving
policy for distributed multimedia presentations was

proposed. The policy expects the object-retrieving pro-

cess to finish right before the playback time of the ob-

jects. Mechanisms, which include the converting

algorithm of the synchronization relationship to RTSM,

calculation of the original playback duration for each

object, and the estimation of the object request time, to

support the just-in-time policy were proposed.
The contributions of the paper are listed as follows:

(1) The features of the distributed multimedia presenta-

tion were investigated, and the just-in-time policy

with corresponding mechanisms to support object

retrieving was proposed.

(2) The converting algorithm of the synchronization re-

lationship for the SMIL1.0-based multimedia pre-
sentation to RTSM was proposed. The conversion

provides an easier and systematic way to deal with

the temporal relationship of the objects in the pre-

sentation.

(3) Modeling of the user interactions such as fast for-

ward, fast backward, and sliding, etc., for distrib-

uted multimedia presentations was proposed.

Procedures of the object retrieving for handling the
random user actions during the playback of the pre-

sentation were also presented in the paper.
(4) The feasibility and the better performance of the

proposed just-in-time policy had been proved by

system implementation and performance measure-

ments.

(5) Although this paper focuses on the SMIL-based

multimedia presentations, the proposed methodol-
ogy could be also applied to non-SMIL presenta-

tions.
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