
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1377-1395 (2008)

1377

Extension of Timeline-based Editing for Non-deterministic
Temporal Behavior in SMIL2.0 Authoring*

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

Department of Computer Science and Information Engineering
National Chi Nan University

Puli, 545 Taiwan

Timeline-based editing provides nonprofessional users an intuitive and friendly way

for multimedia authoring, but the schedule-based and deterministic property of timeline
results in the lack of the ability for supporting non-deterministic temporal behavior,
which is one of the key features of SMIL2.0. This paper presents our elaborate effort of
supporting non-deterministic temporal behavior by timeline-based editing. The concept
of Dividable Dynamic Timeline (DDTL) is proposed in the paper, which includes two
novel features: dividable timeline and dynamic section. With DDTL, authors can create
interactive multimedia presentations while enjoying the convenience of timeline. Mecha-
nisms of converting from DDTL editing results to SMIL2.0 and the reuse of SMIL2.0
scripts are presented in the paper. By the reuse of existing SMIL2.0 scripts and the flexi-
ble features of DDTL, an efficient and friendly authoring environment for SMIL2.0-
based interactive multimedia presentations can be provided. Implementation of the sys-
tem provides a friendly WYSIWYG environment and multiple views/windows are pro-
vided by the systems to help SMIL2.0 authors compose multimedia presentations effi-
ciently.

Keywords: SMIL2.0, multimedia authoring, interactive presentation

1. INTRODUCTION

Synchronized Multimedia Integration Language (SMIL) [1-3] developed by WWW
Consortium (W3C) provides Internet users a mechanism to compose multimedia docu-
ments. With SMIL, authors can create multimedia presentations integrating video, audio,
animation, image, text, etc. There are two versions of SMIL specification that had been
released. The current version of SMIL (SMIL2.0 and up) enhances the previous sched-
uled-based version (SMIL1.0) by a strong support of user interaction with a declarative
event-based timing.

The direct way to create a SMIL document is to use a text editor and start writing
SMIL tags as most of the programmers do. For nonprofessionals, it is much better to
have an authoring system that helps users compose SMIL documents in a visualized
(WYSIWYG) way. Two major categories of visualized SMIL1.0 authoring are (1) struc-
ture-based editing, and (2) timeline-based editing. Structure-based editing is primarily
based on the visualization of SMIL temporal relations (i.e. <seq> and <par>), and users
need to organize nested <seq> and <par> blocks. On the other hand, timeline-based edit-
ing hides the language structure of SMIL by visualizing the playback time and duration

Received November 17, 2006; revised July 17, 2007; accepted March 6, 2008.
Communicated by Chung-Sheng Li.
* Preliminary versions of the paper were published in the proceedings of IEEE ICME 2004 [29, 30].

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

1378

of each object in the timeline manner providing users a more intuitive way to understand
and easily control the timing of each object.

In our previous work, we proposed an efficient modeling technique [4] for SMIL1.0,
and based on that technique, we designed and implemented a friendly and powerful time-
line-based SMIL1.0 authoring system called SMILAuthor [5]. In light of easy learning of
timeline-based editing, we intended to extend our effort in SMIL1.0 authoring to support
SMIL2.0. However, the feature of event-based timing in SMIL2.0 introduces non-deter-
ministic temporal behavior in a presentation which means the accurate playback time
(and duration) of some media objects as well as the total length of the presentation can-
not be determined before run-time. Apparently, the original timeline-based scheme can-
not support authoring of non-deterministic temporal behavior. Thus, two novel features,
namely dividable timeline and dynamic section, are proposed in this paper to support
non-determinism in timeline-based editing. The new editing scheme is thus called Di-
vidable Dynamic Timeline-based (DDTL-based) authoring.

Moreover, in order to reuse a SMIL2.0 script in the authoring process, the script
must be converted to the form of DDTL. There are two steps involved in the conversion.
First, the script is converted to our previously proposed model namely Extended Real-
Time Synchronization Model (E-RTSM) [6], which provides a systematic view for the
temporal information in the script. In the second step, the temporal information of each
object in the script is extracted by processing E-RTSM and represented in the form of
DDTL.

The rest of the paper is organized as follows. Definition of E-RTSM is presented in
section 2. The basic concept of DDTL as well as the conversion mechanisms from DDTL
to SMIL2.0 are presented in section 3. Reuse of existing SMIL2.0 scripts in DDTL-based
authoring are presented in section 4. Implementation of the proposed authoring system is
presented in section 5. Related work of the paper is discussed in section 6. Finally, sec-
tion 7 concludes this paper.

2. EXTENDED REAL-TIME SYNCHRONIZATION MODEL (E-RTSM)

The previous version of E-RTSM, RTSM was proposed to address the lack of Petri
net based models such as OCPN (Object Composition Petri Net) for dealing with real-
time synchronization. There are two kinds of places in RTSM, regular places and en-
forced places. The firing rule of RTSM specifies that once an enforced place becomes
unblocked (i.e. related action associated with the place is completed), the following tran-
sition will be immediately fired regardless the states of other places feeding the same
transition. With the enforced firing rule, temporal relationship of objects in a SMIL1.0
document can be easily represented by RTSM. Please refer to our previous work [4, 7]
for more detailed definition, properties, and application of RTSM.

E-RTSM was proposed to equip RTSM with the ability of modeling event-based
timing in SMIL2.0. Major differences between SMIL1.0 and SMIL2.0 in timing control
include: (1) Values of <begin> and <end> attributes for an object (or time containers
<par> and <seq>) can be non-deterministic events, i.e. Events with unknown occurring
times such as Mouse-Click events or Key-Pressed events. (2) Multiple values for <begin>
and <end> attributes are allowable for media objects and time containers, i.e. the start or

TIMELINE-BASED EDITING FOR SMIL2.0 AUTHORING

1379

the end of a SMIL2.0 object can be controlled by more than one event. (3) Some com-
plicated synchronization features such as <restart> and <min/max> attributes are also
defined in SMIL2.0.

In order to cope with the non-deterministic synchronization behaviors of SMIL2.0,
two new features are added in E-RTSM: (1) allowing a place in E-RTSM to be mapped
to a non-deterministic event (denoted by a “?” in a place). (2) Run-time controllers for
complicated synchronization features are defined.

Introducing association of non-deterministic events with E-RTSM places increases
the flexibility of the model, but it also increases the difficulty in processing the model,
such as the estimation of the firing time of each transition. On the other hand, a non-
deterministic event is normally associated with an enforced place in the application of
converting SMIL2.0 scripts to E-RTSM. However, from the viewpoint of modeling, a
regular place can also be mapped to a non-deterministic event, and in such case the non-
deterministic event is not dominating the firing of the following transition.

Run-time controllers are used to model complicated timing features in SMIL2.0 that
are difficult or impossible to be represented by the combination of other basic elements
(arc, transition, place). A run-time controller can be placed in between any two transi-
tions (the start transition and the end transition) as places in E-RTSM. Bi-directional arcs
are used to connect the start transition to the run-time controller and the run-time con-
troller to the end transition. A run-time controller is associated with a set of rules that
control the firing of the start and the end transitions. Therefore, the operation of a run-
time controller overrides the operation of the places/transitions in between the start and
the end transitions of the run-time controller.

By using run-time controllers in E-RTSM, handling of these complicated timing
features is delayed until run-time rather than the modeling (parsing) phase. Three run-
time controllers have been defined in E-RTSM: Restart controller, Min controller, and
Repeat controller. Introduction of run-time controllers in E-RTSM brings some conven-
ience in synchronization modeling. However, due to the inherent limitation of timeline-
based editing, the proposed extension of timeline-based editing can not support the
complicated temporal relationship presented by the run-time controllers. Definition of
E-RTSM is given as follows:

Definition E-RTSM is a 10-tuple {T, P, E, R, A, B, D, M, N, X}, where
(Note that the differences between E-RTSM and RTSM are underlined.)
T = {t1, t2, …, tn} Transitions
P = {p1, p2, …, pm} Regular places (single circles)
E = {e1, e2, …, ek} Enforced places (double circles)
S = P ∪ E All places
R = {r1, r2, …, ri} Run-time controllers
A = {T × S} ∪ {S × T} Unidirectional arcs
B = {T × R} ∪ {R × T} Bi-directional arcs
D = S → Real number Time duration of places
M = S → {m1, m2, …, mj} Regular types of medium
N = S → {n1, n2,…, nt} Non-deterministic events
X = S → {0, 1, 2} State of places

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

1380

Each place may be in one of the following states:
0: no token
1: token is blocked A “cross” in the place
2: token is unblocked A “dot” in the place

The firing rules of E-RTSM are the same as those of RTSM in the absence of run-
time controllers. When a run-time controller is presented between two transitions, the
firing of the transitions (the start transition and the end transition) is controlled by the
run-time controller, which can override the firing rules associated with places.

3. DIVIDABLE DYNAMIC TIMELINE (DDTL)

Normally authors must specify the exact playback time and duration of each object
in timeline-based editing. According to an object’s playback time and duration, a time-
line segment representing that object is displayed at corresponding position on the time
axis. In order to introduce non-deterministic temporal behavior in timeline and decide to
what extent timeline-based editing can do for SMIL2.0 authoring, we need to investigate
the synchronization characteristics in SMIL2.0.

<seq>
 <par endsync = “A1”>
 <audio id=A1>

 <video id=V1 begin=“Btn1.Click”
end=“Btn2.Click”>

 </par>

 <par end=”Btn3.Click”> </par>
 <par>
 <audio id=A2>

 <video id=V2>
 </par>
</seq>

V1 V2

A1

?

?
Btn1.Click

Btn2.Click

?

Btn3.Click

endsync=A1

Virtual enforced place (enforced place with zero duration)

Virtual place (regular place with zero duration)

? Non-deterministic event

<par>

A2

<par>

Fig. 1. A sample SMIL2.0 code snippet and its corresponding E-RTSM model.

Fig. 1 shows a sample SMIL2.0 code snippet and its corresponding E-RTSM model.

It is easy to understand from the model that non-deterministic temporal behavior in the
code snippet comes from the non-deterministic events (denoted by a double circle with a
“?”). Moreover, two types of the non-deterministic events are identified in the E-RTSM
model: splitting event and non-splitting event. An event is a splitting event when remov-
ing the event results in two separate parts in the model. The player must wait for the oc-
currence of a splitting event before it can continue playing the rest of the presentation.
Event Btn3.Click in Fig. 1 is a splitting event. Events Btn1.Click and Btn2.Click are non-
splitting events.

Inspired by the two different types of non-deterministic events, we introduce two
novel features in timeline-based editing: dividable timeline (from the idea of splitting
event) and dynamic section (from the idea of non-splitting event), which are explained
respectively in the following subsections.

TIMELINE-BASED EDITING FOR SMIL2.0 AUTHORING

1381

Original Timeline (TL) table

TL-Divide operation

5s 10s 15s 20s0s

Assume default TL-Divide space = 5s

TL1 TL2

Shrink/Extend along time axis ? Non-deterministic event

5s 10s0s 18s 23s

?

13s

Fig. 2. TL-Divide operation.

TL1 TL2TL-Merge
operation

5s 10s0s 18s 23s

Assume default TL-Merge space = 5s

5s 10s 0s 18s 23s

?

13s

Fig. 3. TL-Merge operation.

3.1 Dividable Timeline

We define TL-Divide operation enabling users to divide a timeline table into two
sequentially separated timeline tables and associate a non-deterministic splitting event
(e.g. user’s mouse action) with the beginning of the latter timeline table. An example of
TL-Divide operation is shown in Fig. 2. To divide a timeline table, the author has to
specify a proper cutting point on the time axis such that no objects will be cut into two
pieces. Moreover, in order to properly display information of the time axis for the latter
timeline table, we need to choose a preset (default) value (e.g. 5s in Fig. 2) for the occur-
rence time of the splitting event. The preset value is only for reference in authoring stage
since the exact occurrence time of the event is unknown before run-time. For more flexi-
bility, the authoring system should allow users to change the reference occurrence time
of the event as shown in Fig. 2.

The reverse of TL-Divide is TL-Merge operation. The author uses the operation to
remove the non-deterministic event and merge two separated timeline tables. Fig. 3 gives
an example of TL-Merge operation. Note that the default space in time for TL-Divide
and TL-Merge depends on the content of the document being composed. Thus, in addi-
tion to using a general default value, the authoring system should also provide a friendly
way for the user to dynamically change the value of the space.

3.2 Dynamic Section

A dynamic section (DS) is defined for a dynamic object whose beginning and/or

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

1382

 Anchor of the dynamic section

Timeline of the object

? ?

Time axis

Btn2.Click

T0 TS TE

Ancho

T1

V1

Btn1.Click

DS

0s

? ?

Time axis

Btn2.Click

T0 TS TE

Ancho

T1

V1

Btn1.Click

A1

Tx1DS

0s

(a) For a single object. (b) For a group of parallel objects.

Fig. 4. Dynamic section in a timeline table.

? ?

Time axis

Btn2.Click

T0 TS TE

Anchor

T1

V1

Btn1.Click

? ?
Btn4.Click

(No anchor)

T2

V2

Btn3.ClickConnector

DS1

DS2
Connector of sequential relation for dynamic sections ……

0s

Fig. 5. Connecting two dependent DS.

ending are triggered by non-splitting events. As shown in Fig. 4 (a), to create a DS for an
object, the user has to specify the position (anchor) and the length of the DS on the time
axis. Two events are associated with beginning and ending of the object in the DS. That
is, DS defines the time range of playback for an object, but the actual starting time and
ending time of the object are not determined until run-time. Thus, the positions of the
two events on the time axis are only for reference in authoring stage. As illustrated in Fig.
4 (b), DS can also control a group of parallel objects such that the group acts just like a
single object in the DS. The authoring system should provide the option to disable/enable
events in a DS for more flexibility.

Given that the author may expect a dynamic object depending on a former dynamic
object. We propose a DS operator called connector to support dependency between dif-
ferent dynamic sections. As illustrated in Fig. 5, beginning of DS2 depends on DS1’s
ending, and DS1’s ending depends on event Btn2.Click. By using DS connector, the au-
thor can easily create a sequence of dependent dynamic objects.

3.3 Converting DDTL to SMIL2.0

The editing result of DDTL needs to be converted to SMIL2.0 format and saved as a
SMIL document for future playback on a SMIL player. We had developed a converting

TIMELINE-BASED EDITING FOR SMIL2.0 AUTHORING

1383

<seq>
<TL1>
<par end=“Btn.Click”> </par>
<TL2>

</seq>

Fig. 6. SMIL code snippet for TL-Divide.

<par begin= “T0–0s”end=“Btn2.Click;
T1–0s”>
 <video id=V1 begin=“Btn1.Click” >
</par>
/*** note that DS’s time base is 0s ***/

<par begin=“T0–0s”end=“Btn2.Click; T1–0s”>
 <par begin=“Btn1.Click”>
 <video id=V1>
 <audio id=A1>
 <text id=Tx1>
 </par>
</par>
/*** note that DS’s time base is 0s ***/

(a) Single object in the DS. (b) Group of objects in the DS.
Fig. 7. SMIL code snippet for the DS in Fig. 4.

algorithm from deterministic timeline data to SMIL1.0 in our previous work [5]. We only
present the converting mechanisms for dividable timeline and dynamic section in this
paper, and the mechanisms can be easily integrated into the original converting algorithm
in our previous work.

Since the two separated timeline tables resulted from TL-Divide operation have a
sequential relation, a parent <seq> time container is created for the two timeline tables,
and a <par> time container with its <end> attribute set as the non-deterministic event is
added in between the two timeline tables. Fig. 6 shows the code snippet for the result of
TL-Divide in Fig. 2.

To convert a DS to SMIL2.0, we need to know that there are two run-time cases
ending a DS as well as the dynamic object in the DS: (1) the viewer triggers the ending
event for the object, or (2) no ending event triggered but the preset ending time of the DS
(which is according to the length of the DS) is reached. Therefore, in the conversion, we
need to create a parent time container <par> for the object and set the <end> attribute of
the <par> to reflect the above two cases. Fig. 7 (a) shows the code snippet for the DS in
Fig. 4 (a), in which the <end> attribute of the parent element <par> is a list of two cases
to end the DS (i.e. event Btn2.Click or time T1 is reached). The <begin> attribute in the
parent <par> specifies the location of the DS on the time axis, and the <begin> attribute
of the object defines the triggered event to start the object. Similarly, the conversion of
the DS containing a group of objects (Fig. 4 (b)) is shown in Fig. 7 (b).

For a sequence of dynamic sections connected by DS connectors, we need to create
a parent <seq> for all DS in the sequence. The code snippet for a sequence of DS (Fig. 5)
is displayed in Fig. 8. Please note that the time base of the first DS (DS1, with an anchor)
and the time base of the other DS (DS2 and the following) are different. Since DS1 is the
first child element in the <seq> element, DS1’s time base is the begin time of the <seq>
element. DS2 is the succeeding element of DS1 in the <seq> element, thus DS2’s time
base is the end of DS1, which is triggered by either the Btn2.Click event or the preset
ending time T1. A sample DDTL editing result is displayed in Fig. 9. The correspond-
ing SMIL2.0 code snippet for that sample is shown in Fig. 10. Note that the code snip-
pet in Fig. 10 only serves for demonstrative purpose, and some of the mandatory attrib-
utes such as “region” and “src” in the example are removed for higher compactness and
readability.

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

1384

<seq>
 <par id=DS1 begin=T0–0s end=“Btn2.Click; T1–0s”>
 <video id=V1 begin=“Btn1.Click”>
 </par>
 <par id=DS2 end=“Btn4.Click; T2-TE (DS2 Length)”>
 <video id=V2 begin=“Btn3.Click”>
 </par>
 …… /* for following DS, if any */
</seq>

/*** DS1’s time base is 0s ***/
/*** DS2’s time base is the end of DS1 ***/

Fig. 8. SMIL code snippet for the sequence of DS in Fig. 5.

A1

4s 12s0s 47s

3
A2

TL1

TL2

16s 22s

V1

21

27s 49s

DS1

DS2

A3

V2

54

V3

76

DS3

39s37s

Fig. 9. Sample DDTL editing result.

<seq>

 <par id=TL1>
 <seq>
 <audio id=A1 begin=“4s” dur=“12s-4s”>
 <audio id=A2 begin=“16s-12s” dur=“22s-16s”>
 </seq>
 <par id=DS1 begin=“4s”, end=“Btn2.Click;16s”>
 <video id=V1 begin=“Btn1.Click”>
 </par>
 </par>

 <par end=“Btn3.Click”> </par>

 <par id=TL2>
 <audio id=A3 begin=“0s” dur=“47s-27s”>
 <seq>
 <par id=DS2 begin=“0s” end=“Btn5.Click;39s-27s”>
 <video id=V2 begin=“Btn4.Click”>
 </par>
 <par id=DS3 end=“Btn7.Click;49s-37s”>
 <video id=V3 begin=“Btn6.Click”>
 </par>
 </seq>
 </par>

</seq>

Fig. 10. SMIL code snippet for the example in Fig. 9.

4. REUSE OF SMIL2.0 SCRIPTS

To reuse a SMIL2.0 script in DDTL-based editing, the script must be converted to
elements in DDTL, which include original timeline segment, dividable timeline, and
dynamic section. Two steps are involved in converting a SMIL2.0 script to DDTL: (1)
converting the script to our previously proposed E-RTSM, and (2) Extracting DDTL

TIMELINE-BASED EDITING FOR SMIL2.0 AUTHORING

1385

<seq>

 <par id=TL1>
 <seq>
 <audio id=A1 begin=“4s” dur=“8s”>
 <audio id=A2 begin=“4s” dur=“6s”>
 </seq>
 <par id=DS1 begin=“4s”>
 <video id=V1 begin=“Btn1.Click” end=“Btn2.Click;12s”>
 </par>
 </par>

 <par end=“Btn3.Click”> </par>

 <par id=TL2>
 <audio id=A3 dur=“20s”>
 <seq>
 <par>
 <video id=V2 begin=“Btn4.Click” end=“Btn5.Click;12s”>
 </par>
 <par>
 <video id=V3 begin=“Btn6.Click” end=“Btn7.Click;12s”>
 </par>
 </seq>
 </par>

</seq>

Fig. 11. A sample SMIL2.0 code snippet.

V1

<A1>

A1

?

Btn3.Click

?

Btn1.Click

Enforced place Virtual place (regular place with zero duration) ? Non-deterministic event

<V1>

8s

4s A2

6s

4s

12s

4s

?

Btn2.Click

A3

20s

V2
?

Btn4.Click

12s

?

Btn5.Click

V3
?

Btn6.Click

12s

?

Btn7.Click

<A2> <A3>

<V2> <V3>

<par id=TL2>
<par id=TL1>

Regular place

Fig. 12. E-RTSM model for the sample SMIL code snippet in Fig. 11.

elements from E-RTSM. Since E-RTSM and related converting algorithm were proposed
in our previous work [6], we only give a typical example for the conversion from
SMIL2.0 to E-RTSM and focus on converting E-RTSM to DDTL. A sample SMIL2.0
code snippet is shown in Fig. 11. The corresponding E-RTSM for that sample is dis-
played in Fig. 12.

For an input SMIL script to be reused in timeline-based authoring, the playback
time and duration of each object in the script must be determined. According to an ob-
ject’s playback time and duration, a timeline segment representing that object is dis-
played at corresponding position on the time axis. In our previous work for SMIL1.0
authoring, we had developed the mechanisms to calculate the playback time and duration
(deterministic values) for each object in an input SMIL1.0 script. However, the previ-
ously proposed mechanisms cannot be directly applied in the case of SMIL2.0, since part

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

1386

of the objects in the script may have non-deterministic temporal behavior. Therefore, we
propose the modified mechanisms to convert E-RTSM to DDTL in this paper.

4.1 Identifying Splitting Events

As mentioned in section 3, DDTL incorporates the non-deterministic temporal be-
havior with traditional deterministic timeline segments. Non-deterministic temporal be-
havior in DDTL comes from the features of dividable timeline and dynamic sections,
which can be mapped to two types of non-deterministic events in E-RTSM. Since en-
forced places dominates the firing time of transitions and to provide a better understand-
ing for the playback of the presentation, an E-RTSM model is reduced by removing the
regular places that feed into the same transition with one or more enforced places. The
result of the reduction is called the reduced E-RTSM. Fig. 13 shows the reduced E-RTSM
for the model in Fig. 12. An event dividing a timeline table into two separate tables must
be a splitting event in the reduced E-RTSM. A splitting event is a non-deterministic event
(an enforced place with a “?”) and when removing the event will divide the reduced
E-RTSM into two separated parts.

?

Btn3.Click

?

Btn1.Click

8s

4s

6s

4s

12s

4s

?

Btn2.Click

20s

?

Btn4.Click

12s

?

Btn5.Click

?

Btn6.Click

12s

?

Btn7.Click

Reduced E-RTSM-1 Reduced E-RTSM-2

A1 A2

V1

A3

V3 V2

Splitting event

Fig. 13. Reduced sub-E-RTSMs of the model in Fig. 12.

We have to find all splitting events in the reduced E-RTSM in order to properly

identify all divided timeline tables in the input script. The simplest way to decide whether
an event is a splitting event or not is to temporally remove the event and check the
reachability of the end of the model. If the end of the reduced E-RTSM is unreachable
when removing an event, the event is a splitting event. For example, Btn3.Click in Fig.
13 is a splitting event, and thus two timeline tables (from the two sub-models E-RTSM-1
and E-RTSM-2 respectively) emerge.

4.2 Identifying Dynamic Sections

After the sub-E-RTSM models for different timeline tables are determined, the next
step is to traverse these sub-models (in the reduction form) respectively in order to cal-
culate the firing time of each transition. The firing time of the transition right before an
object is the starting time of the object, and the firing time of the transition followed by
the object is the ending time of object.

There are only two cases for one transition in a reduced E-RTSM: (1) places that

TIMELINE-BASED EDITING FOR SMIL2.0 AUTHORING

1387

…

T1

T2

Tn

Tx

D1

D2

DN

…

…

…

…

T1

T2

Tn

Tx

D1

D2

DN

…

…

…

(a) Tx = Min(T1 + D1, …, Tn + Dn). (b) Tx = Max(T1 + D1, …, Tn + Dn).

Fig. 14. Determine the firing time of transition Tx.

ID

A1

A2

V1

E-RTSM-1: 0s

Beginning time Ending time

4s 12s

16s 22s

4s + Btn1.Click 4s + MIN (“Btn1.Click + Btn2.Click”, 12s)

E-RTSM-2: Btn3.Click

A3 0s 20s

V2 Btn4.Click MIN (“Btn4.Click + Btn5.Click”, 12s)

V3 END (V2) + Btn6.Click END (V2) + MIN (“Btn6.Click + Btn7.Click”, 12s)
Fig. 15. Beginning and Ending time for each object in Fig. 10.

feed to the transition are all enforced places, or (2) places that feed to the transition are
all regular places. For case (1), the firing time of the transition is the minimal value of
“the firing time of the preceding transition” plus “the duration of the following place of
the preceding transition”, which is illustrated in Fig. 14 (a). Fig. 14 (b) shows case (2), in
which transition Tx is fired only after all its preceding regular places finish playing.
Therefore, for case (2), the firing time of transition Tx is the maximum value of “the fir-
ing time of the preceding transition” plus “the duration of the following place of the pre-
ceding transition”. The duration of each place depends on the type of the media object.
For an enforced place of time medium, the duration of the place is the value of the dura-
tion. For static media objects, such as and <text>, the duration of the place is zero.
For continuous media objects, such as <audio> and <video>, the duration of the place is
the implicit duration of the object that is provided by the data server. Since the objects
stored in a data server are all pre-orchestrated, it is easy for the data server to obtain the
implicit duration of a continuous object. However, for a non-deterministic event, the du-
ration of the enforced place is non-deterministic and is represented by a variable in the
firing time calculation.

Fig. 15 shows the beginning time and ending time of each object in the two sub-E-
RTSM models in Fig. 13. For those objects (A1, A2, A3) with deterministic beginning
time and ending time, a timeline segment is displayed at corresponding position on the
time axis in the timeline table. Dynamic sections are used to represent those objects that
do not have deterministic beginning time and ending time.

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

1388

As mentioned in section 2, DS is used to define an object with a beginning event
and an ending event. The general mathematical expression for the beginning time of the
object in a DS (Fig. 4 (a)) is T0 + BeginEvent, and the ending time of the object, T0 +
MIN (BeginEvent + EndEvent, Length of the DS). (MIN is the function that returns the
smaller one from two given variables/values) Therefore, for those objects with beginning
time and ending time in the form of above expressions can be represented by DS. For
example, objects V1 and V2 (Fig. 15) are converted to dynamic sections in their respec-
tive timeline tables.

For an object whose playback depends on others is converted to a dependent DS. A
dependent DS is connected to a former DS by a DS connector, therefore, the general
form of the beginning time and ending time for the object in a dependent is as follows:

Beginning: END(the former DS) + BeginEvent.
Ending: END(the former DS) + MIN(BeginEvent + EndEvent, Length of the DS).

For example, object V3 in Fig. 15 has the form of dependent DS (and its former DS

is V2’s DS). Therefore, a DS connector is created to connect V3’s DS (DS3) to its former
DS (DS2). The final DDTL result of converting the sample code snippet in Fig. 11 is the
same as the one in Fig. 9.

4.3 Discussion

As mentioned in section 3, the idea of DDTL comes from E-RTSM. It is easy to
know that an object in an E-RTSM model (e.g. run-time controllers) cannot always be
represented by elements in DDTL. That is, DDTL cannot cover the whole set of temporal
non-determinism supported by SMIL2.0, which means for an input SMIL2.0 script there
may be some objects that cannot be represented by DDTL elements. Those objects that
cannot be DDTL-ized cannot be reused in DDTL-based authoring process. The power of
DDTL in dealing with non-deterministic temporal behavior needs to be further explored
in the future work of the research.

5. SYSTEM IMPLEMENTATION

We extended the previously implemented system namely SMILAuthor to support
DDTL-based editing. The new version of the system is thus called SMILAuthor2. Im-
plementation of SMILAuthor2 follows a similar concept as proposed in [12] to provide a
“WYSIWYG” authoring environment. There are five major windows in the system to
provide different views for the currently composing presentation. They are (1) visual
layout window, (2) timeline window, (3) filter window, (4) attribute window, and (5) pre-
view window. The display of the system on the monitor is shown in Fig. 16.

The visual layout window is used for the author to edit spatial relationship required
by the presentation. The user could use the window to add, delete, resize, and move re-
gions for the visual layout of the presentation. The timeline window displays the play-
back duration for objects. The users use the timeline windows to perform DDTL-based
editing functions as well as SMIL1.0-related editing functions [9] such as clear, cut,

TIMELINE-BASED EDITING FOR SMIL2.0 AUTHORING

1389

Timeline window Visual layout window Attribute window Filter window

Tool bar

Fig. 16. The display of SMILAuthor2 on the screen.

copy, paste, etc. In order to reduce the large amount of information that has to display to
the author, a filter window is used for the author to set displaying rule for both visual
layout window and timeline window. The author could display selected information by
specifying either medium type or time duration in the filter window. The attribute win-
dow is used to display and modify the attribute information for each object. Finally, the
preview window is used to preview the presentation before saving the result to a file.
Moreover, the preview window allows the author to preview only part of the presenta-
tion by specifying the preview duration, which is called partial preview function in the
system.

6. RELATED WORKS

Timing issues in multimedia formats had been addressed intensively in the work of
Rogge et al. [9], in which ten criteria were proposed in their reference model for com-
paring existing multimedia formats including SMIL, QuickTime, Shockwave Flash, Real-
media, Advanced Streaming Format, and MPEG-4. The authors concluded that SMIL
was the only document model supporting all 29 temporal relationships in the reference
model. Moreover, SMIL were also designed to have good properties in terms of fine
granularity, interactivity with users, extensibility, reusability, adaptability, etc. In other
words, from the academic viewpoint, SMIL does have what it takes to become one of the
most important formats in multimedia presentations.

Multimedia authoring [10-18] have been addressed a lot in the literature for many
years. Bulterman and Hardman [10] surveyed selected commercial and research ap-
proaches in the context of four different but not mutually exclusive paradigms for au-

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

1390

thoring multimedia documents: structured-based, timeline-based, graph-based and script-
based. Although the timeline-based paradigm is easily understood and manipulated for
non-interactive, non-adaptive presentations, the authors argued that the structured-based
paradigm provides the most useful framework for presentation authoring. Therefore,
most of the existing work in multimedia authoring follows the paradigm of structure-
based editing. Timeline-based editing in interactive multimedia authoring has not re-
ceived much of the attention in the literature due to its limitation in supporting complex
temporal relationships. Some of the previous authoring systems used the notion of time-
line as a supplement in authoring process, in which the timeline view was used only for
display, instead of supporting the operations of editing.

Furthermore, most of the authoring systems used proprietary formats in representing
multimedia presentations that reduce the popularity of the presentations over WWW. It’s
worth mentioning that the idea of partial time chain proposed in the work of Soares et al.
[16] is similar to the idea of dividable timeline in this paper, since a partial time chain
was defined as the time chain in which all its events, except the first one, are predictable
in relation to at least one event of the same partial time chain. However, the notion of
timeline was used only for display in their work as mentioned above, and the idea of dy-
namic sections in a timeline table was not included in their work.

As the most prestigious commercial product in SMIL authoring, GRiNS [19] is an
example of a structure-based authoring environment that provides multiple document
views. The authoring paradigm incorporated in GRiNS are structure and timeline editing
(called structured timeline), in which interactive event-based timing is ignored for the
timeline (at the authoring stage), objects that start on events are shown as started at the
time the event is evaluated. In order to specify the temporal relationship among objects,
GRiNS defines different types of containers as displayed in Fig. 17, indicating how child
objects are scheduled and activated. By default, GRiNS illustrates the basic structure of
the presentation. Although an ordering can be determined, there is no direct representa-
tion of the presentation timeline. However, GRiNS provides a timeline view that illus-
trates the temporal composition of objects once that structure container is activated. In
summary, GRiNS does provide a powerful tool for SMIL authoring, but users are re-
quired to be equipped with professional knowledge of temporal composition in SMIL for
effective use of the product.

Evolved from a structure-based system called Madeus [20], LimSee2 [21-23] (Fig.
18) is an open-source and cross-platform authoring tool for SMIL, in which the timeline
paradigm dominates the synchronization control process. Users can adjust media syn-
chronization by moving and resizing the boxes of objects in the timeline view. As
pointed out by Bulterman and Hardman [10], the timeline view in LimSee2 does not
support asynchronous interaction or adaptive content. There are some elements or attrib-
utes in SMIL that can not be edited directly. Editing those elements/attributes is only
possible through the hierarchical and attribute views. Moreover, as in GRiNS, the time-
line view of LimSee2 adopts a hierarchical structure and the users need to have the
knowledge of the synchronization characteristic in SMIL, such as <par> and <seq>. By
comparing DDTL with synchronization control in GRiNS and LimSee2, we conclude
that DDTL hides the language of SMIL and enjoys more of the benefit of timeline-based
editing with partial support of asynchronous (event-based) interaction.

TIMELINE-BASED EDITING FOR SMIL2.0 AUTHORING

1391

Parallel
container

Sequential
container

Exclusive
container

Fig. 17. Examples of GRiNS containers.

Fig. 18. Snapshot of LimSee2.

Most of the research work supporting SMIL2.0 authoring is non-timeline-based.

Sung and Lee [24] developed a collaborative authoring system based on SMIL. Their
system provided a unified 3D interface that allowed for simultaneous authoring and ma-
nipulation of both the temporal and spatial aspects of a presentation. A timeline-based
editor was provided in their system, but their work was mainly focused on SMIL1.0 tim-
ing (event-based timing in SMIL2.0 was not addressed). Sampaio et al. [25] proposed a
RT-LOTOS (Real-Time Language of Temporal Ordering Specifications [26]) based
mechanism for semantic verification of SMIL documents, which is helpful in developing

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

1392

authoring systems. Non-deterministic events were considered in their work, but their
target was mainly SMIL1.0. Chang [27] developed a temporal algebra system to unify
media presentation time and interaction event and deal with qualitative and quantitative
inconsistency in SMIL2.0 documents, which can be used in semantic verification during
paring stage. Editing support in the authoring process was not addressed in their work.

Chung and Pereira [28] proposed a technique based on Timed Petri Net (TPN) to
capture the timing and synchronization information of multimedia objects specified in
SMIL2.0. They incorporated a new type of transition (denoted by special transition), a
couple of different types of state for places (two tokens can be placed in a place, and
each token can be in one of three types), and complicated firing rules in TPN for
SMIL2.0 modeling. Although some elaborate features were added in TPN, the authors
did not explain how can the proposed scheme model some of the complex timing control
behaviors associated with <restart>, <repeatCount>, and <repeatDur> attributes, etc.
We doubts the feasibility of using a graph-based modeling mechanism such as OCPN,
TPN, or even E-RTSM, to completely capture the complex temporal relationships among
media objects in SMIL2.0. Moreover, the application of TPN in SMIL2.0 authoring is
difficult due to its complicated timing rules.

7. CONCLUSION

Timeline-based editing has the beauty of simplicity and high readability in repre-
senting temporal relationships among media objects, and it is easy and friendly for
non-professional users in composing multimedia presentations. However, due to its limi-
tation in supporting complex temporal relationships such as event-based timing in
SMIL2.0, timeline-based editing has not received much of the attention in the literature.
In this paper, we present our effort towards supporting of SMIL2.0 authoring by time-
line-based editing. The concept of Dividable Dynamic Timeline (DDTL) is proposed,
which includes two novel features, dividable timeline and dynamic section, to extend the
original timeline scheme with the support of non-deterministic temporal behavior.
Mechanisms for converting DDTL data to SMIL2.0 format as well as the mechanisms for
reusing a SMIL2.0 script in authoring are presented. DDTL features the easy-learning
characteristic of timeline and to some extent allows authors to compose interactive and
event-based multimedia presentations. The implementation of extending our previous
SMIL1.0 authoring system to support DDTL is also presented.

The future work of the paper is to explore more about the potential of DDTL in
supporting SMIL2.0 authoring, in which we will try to identify and define the temporal
relationships that DDTL can and cannot achieve. Moreover, impact of DDTL on user
friendship in authoring SMIL is also left as the future work.

The contributions of the research in the paper are listed as follows:

(1) The idea of dividable timeline and dynamic section to extend timeline-based editing

for SMIL2.0 authoring is proposed.
(2) Converting algorithms for DDTL to SMIL2.0 are presented.
(3) Mechanisms for reusing an existing SMIL2.0 script in the DDTL-based authoring

process are proposed.

TIMELINE-BASED EDITING FOR SMIL2.0 AUTHORING

1393

(4) Feasibility of the proposed techniques has been proved by prototype system imple-
mentation.

REFERENCES

1. Synchronized Multimedia Integration Language (SMIL) 2.0 Specification, W3C
Recommendation, 2001, http://www.w3.org/TR/smil20.

2. D. C. A. Bulterman, “SMIL 2.0 part 1: overview, concepts, and structure,” IEEE
Multimedia, Vol. 8, 2001, pp. 82-88.

3. D. C. A. Bulterman, “SMIL 2.0. 2. examples and comparisons,” IEEE Multimedia,
Vol. 9, 2002, pp. 74-84.

4. C. C. Yang and Y. Z. Yang, “Design and implementation of the just-in-time retriev-
ing policy for schedule-based distributed multimedia presentations,” Journal of Sys-
tems and Software, Vol. 71, 2004, pp. 49-63.

5. C. C. Yang and Y. Z. Yang, “SMILAuthor: an authoring system for SMIL-based
multimedia presentations,” Journal of Multimedia Tools and Applications, Vol. 21,
2003, pp. 243-260.

6. C. C. Yang, Y. C. Wang, and C. W. Tien, “Synchronization modeling and its appli-
cations for SMIL2.0 presentations,” Journal of Systems and Software, Vol. 80, 2007,
pp. 1142-1155.

7. C. C. Yang and J. H. Huang, “A multimedia synchronization model and its imple-
mentation in transport protocols,” IEEE Journal of Selected Area in Communica-
tions, Vol. 14, 1996, pp. 212-225.

8. M. Jourdan, C. Roisin, and L. Tardif, “Multiviews interfaces for multimedia author-
ing environments,” in Proceedings of Multimedia Modeling, 1998, pp. 72-79.

9. B. Rogge, J. Bekaert, and R. van de Walle “Timing issues in multimedia formats:
review of the principles and comparison of existing Formats,” IEEE Transactions on
Multimedia, Vol. 6, 2004, pp. 910-924.

10. D. Bulterman and L. Hardman, “Structured multimedia authoring,” ACM Transac-
tions on Multimedia Computing, Communication and Applications, Vol. 1, 2005, pp.
89-109.

11. S. Hudson and C. N. His, “The walk-through approach to authoring multimedia
documents,” in Proceedings of the 2nd ACM International Conference on Multime-
dia, 1994, pp. 173-180.

12. J. Song, M. Y. Kim, G. Ramalingam, R. Miller, and B. K. Yi, “Interactive authoring
of multimedia documents,” in Proceedings of IEEE Symposium on Visual Languages,
1996, pp. 276-283.

13. J. Freire, R. Lozano, H. Martin, and F. Mocellin, “A STORM* environment for
building multimedia presentations,” in Proceedings of the 12th International Con-
ference on Information Networking, 1998, pp. 329-332.

14. M. Vazirgiannis, I. Kostalas, and T. Sellis, “Specifying and authoring multimedia
scenarios,” IEEE Multimedia, Vol. 6, 1999, pp. 24-37.

15. J. Kim and S. S. An, “Design and implementation of IMAT (Internet Multimedia
Authoring Tool) using a unified spatio-temporal relationship model,” in Proceedings
of the 3rd IEEE Workshop on Multimedia Signal Processing, 1999, pp. 617-622.

CHUN-CHUAN YANG, CHEN-KUEI CHU AND YUNG-CHI WANG

1394

16. L. F. G. Soares, R. F. Rodrigues, and D. C. M. Saade, “Modeling, authoring and
formatting hypermedia documents in the HyperProp system,” Journal of Multimedia
Systems, Vol. 8, 2000, pp. 118-134.

17. M. Vazirgiannis, et al, “Interactive multimedia documents: a modeling, authoring
and rendering approach” Journal of Multimedia Tools and Applications, Vol. 12,
2000, pp. 145-188.

18. R. Willrich, P. Saqui-Sannes, P. Sénac, and M. Diaz, “Multimedia authoring with
hierarchical timed stream Petri nets and Java,” Journal of Multimedia Tools and Ap-
plications, Vol. 16, 2002, pp. 7-27.

19. GRiNS, http://www.oratrix.com/GRiNS/index.html.
20. T. T. Tien and C. Roisin, “A multimedia model based on structured media and sub-

elements for complex multimedia authoring and presentation,” International Journal
of Software Engineering and Knowledge Engineering, Vol. 12, 2002, pp. 473-500.

21. LimSee2, http://wam.inrialpes.fr/software/limsee2/.
22. C. Roisin, V. Kober, V. Quint, P. Genevès, and P. Navarro, “Editing SMIL with

timelines,” in Proceedings of the Synchronized Multimedia Integration Language
European Conference, 2003, http://wam.inrialpes.fr/publications/2003/smileurope_
editing-timelines/EditingSMIL.html.

23. R. Deltour, N. Layaïda, and D. Weck, “LimSee2: a cross-platform SMIL authoring
tool,” ERCIM News (the quarterly magazine of the European Research Consortium
for Informatics and Mathematics), 2005.

24. M. Y. Sung and D. Y. Lee, “A collaborative authoring system for multimedia pres-
entation,” in Proceedings of IEEE International Conference on Communications,
2004, pp. 1396-1400.

25. P. N. M. Sampaio, C. A. S. Santos, and J. P. Courtias, “About the semantic verifica-
tion of SMIL documents,” in Proceedings of IEEE International Conference on Mul-
timedia and Expo, 2000, pp. 1675-1678.

26. J. P. Courtiat, C. A. S. Santos, C. Lohr, and B. Outtaj, “Experience with RT-LOTOS,
a temporal extension of the LOTOS formal description technique,” Computer Com-
munications, Vol. 23, 2000, pp. 1104-1123.

27. A. Y. Chang, “Design of an intelligent distributed multimedia presentation system
using temporal algebra and SMIL,” in Proceedings of IEEE International Confer-
ence on Multimedia and Expo, 2004, pp. 2211-2214.

28. S. M. Chung and A. L. Pereira, “Timed Petri net representation of SMIL,” IEEE
Multimedia, Vol. 12, 2005, pp. 64-72.

29. C. C. Yang, C. K. Chu, and Y. C. Wang, “Dividable dynamic timeline-based author-
ing for SMIL2.0 presentations,” in Proceedings of IEEE International Conference on
Multimedia and Expo, 2004, pp. 1243-1246.

30. C. C. Yang, Y. C. Wang, and C. K. Chu, “Reuse of SMIL2.0 scripts in dividable
dynamic timeline-based authoring,” in Proceedings of IEEE International Confer-
ence on Multimedia and Expo, Vol. 2, 2004, pp. 1235-1238.

TIMELINE-BASED EDITING FOR SMIL2.0 AUTHORING

1395

Chun-Chuan Yang (楊峻權) received his B.S. degree in
Computer and Information Science from National Chiao Tung
University, Taiwan, in 1990 and Ph.D. degree in Computer Sci-
ence from National Taiwan University in 1996. He joined the De-
partment of Computer Science and Information Engineering, Na-
tional Chi Nan University, Puli, Taiwan, as an Assistant Professor
in 1998. Since Feb. 2008, he has been a Full Professor. His re-
search area of interests includes multimedia network protocols,
multimedia synchronization control, and multimedia applications.

Chen-Kuei Chu (朱振魁) received his B.S and master de-
gree in computer science and information engineering from Na-
tional Chi Nan University, Taiwan, in 2002 and 2004. His re-
search topic is multimedia editing and authoring in SMIL2.0.

Yung-Chi Wang (王永吉) received his B.S and master de-
gree in Computer Science and Information Engineering from Na-
tional Chi Nan University, Taiwan, in 2002 and 2004. He is cur-
rently a Ph.D. student in the Institute of Networking and Multi-
media, National Taiwan University. His current research topic is
transmission improvement of multimedia traffic over Internet.

