
 1

Dividable Dynamic Timeline-based Authoring for SMIL2.0 Presentations
Chun-Chuan Yang, Chen-Kuei Chu, and Yung-Chi Wang

Multimedia and Communications Laboratory
Department of Computer Science and Information Engineering

National Chi Nan University, Taiwan, R.O.C.
ccyang@csie.ncnu.edu.tw

ABSTRACT
Timeline-based editing provides users an intuitive and friendly way
for multimedia authoring, but the schedule-based and deterministic
property of timeline results in the lack of the ability for supporting
non-deterministic temporal behavior, which is one of the key features
of SMIL2.0. This paper presents the effort of supporting
non-deterministic temporal behavior by timeline-based editing. The
concept of Dividable Dynamic Timeline (DDTL) is proposed in the
paper, which includes two novel features: dividable timeline and
dynamic section. With DDTL, authors can create interactive
multimedia presentations while enjoying the convenience of timeline.
Mechanisms of converting from DDTL editing results to SMIL2.0
are also presented in the paper.

1. INTRODUCTION

Synchronized Multimedia Integration Language (SMIL) [1-3]
developed by WWW Consortium (W3C) provides Internet users a
mechanism to compose multimedia documents. With SMIL, authors
can create multimedia presentations integrating video, audio,
animation, image, text, etc. There are two versions of SMIL
specification that had been released. The current version of SMIL
(SMIL2.0) enhances the previous scheduled-based version (SMIL1.0)
by a strong support of user interaction with a declarative event-based
timing.
The direct way to create a SMIL document is to use a text editor and
start writing SMIL tags as most of the programmers do. For
non-professionals, it is much better to have an authoring system that
helps users compose SMIL documents in a visualized (WYSIWYG)
way. Two major categories for visualized SMIL1.0 authoring are (1)
structure-based editing, and (2) timeline-based editing.
Structure-based editing is primarily based on the visualization of
SMIL temporal relations (i.e. <seq> and <par>), and users need to
organize nested <seq> and <par> blocks. On the other hand,
timeline-based editing hides the language structure of SMIL by
visualizing the playback time and duration of each object in the
timeline manner providing users a more intuitive way to understand
and easily control the timing of each object.
Few efforts for SMIL2.0 authoring have been made so far, and most
of the existing solutions [9-11] provide structure-based editing. In our
previous work, we proposed an efficient modeling technique [4, 5]
for SMIL1.0, and based on that technique, we designed and
implemented a friendly and powerful timeline-based SMIL1.0
authoring system called SMILAuthor [6]. In light of easy learning of
timeline-based editing, we intend to extend our effort in SMIL1.0
authoring to support SMIL2.0. However, the feature of event-based
timing in SMIL2.0 introduces non-deterministic temporal behavior in
a presentation which means the accurate playback time (and duration)

of some media objects as well as the total length of the presentation
cannot be determined before run-time. Apparently, the original
timeline-based scheme cannot support authoring of non-deterministic
temporal behavior. Thus, two novel features, namely dividable
timeline and dynamic section, are proposed in this paper to support
non-determinism in timeline-based editing. The new editing scheme
is thus called Dividable Dynamic Timeline-based (DDTL-based)
authoring.
The rest of the paper is organized as follows. First of all, the concept
of DDTL as well as the kernel mechanisms in DDTL-based authoring
is presented in section 2. Converting of DDTL data to SMIL2.0
format is explained in section 3. Finally, section 4 concludes this
paper.

2. DIVIDABLE DYNAMIC TIMELINE (DDTL)

Normally authors must specify the exact playback time and duration
of each object in timeline-based editing. According to an object’s
playback time and duration, a timeline segment representing that
object is displayed at corresponding position on the time axis. In
order to introduce non-deterministic temporal behavior in timeline
and decide the extent that timeline-based editing can do for SMIL2.0
authoring, we need to investigate the synchronization characteristics
in SMIL2.0.
To systematically deal with SMIL2.0, an extension of our SMIL1.0
modeling technique had been proposed in our previous work [7, 8].
The new model was called Extended Real-Time Synchronization
Model (E-RTSM). Figure 1 shows a sample SMIL2.0 code snippet
and its corresponding E-RTSM model. It is easy to understand from
the model that non-deterministic temporal behavior in the code
snippet comes from the non-deterministic events (denoted by a
double circle with a “?”). Moreover, two types of the
non-deterministic events were identified in the E-RTSM model:
splitting event and non-splitting event [8]. An event is a splitting
event when removing the event results in two separate parts in the
model. The player must wait for the occurrence of a splitting event
before it can continue playing the rest of the presentation. Event
Btn3.Click in Figure 1 is a splitting event. Events Btn1.Click and
Btn2.Click are non-splitting events.
Inspired by the two different types of non-deterministic events, we
introduce two novel features in timeline-based editing: dividable
timeline (from the idea of splitting event) and dynamic section (from
the idea of non-splitting event), which are explained respectively in
the following subsections.

2.1. Dividable Timeline

We define TL-Divide operation enabling users to divide a timeline
table into two sequentially separated timeline tables and associate a
non-deterministic splitting event (e.g. user’s mouse action) with the
beginning of the latter timeline table. An example of TL-Divide
operation is shown in Figure 2. To divide a timeline table, the author

This work was supported in part by the National Science Council, Taiwan,
R.O.C., under grant NSC 92-2213-E-260-028

 2

has to specify a proper cutting point on the time axis such that no
objects will be cut into two pieces. Moreover, in order to properly
display information of the time axis for the latter timeline table, we
need to choose a preset (default) value (5s in Figure 2) for the
occurrence time of the splitting event. The preset value is only for
reference in authoring stage since the exact occurrence time of the
event is unknown before run-time. For more flexibility, the authoring
system should enable users to change the reference occurrence time
of the event as user’s wish.

The reverse of TL-Divide is TL-Merge operation. The author uses the
operation to remove the non-deterministic event and merge two
separated timeline tables. Figure 3 gives an example of TL-Merge
operation.

2.2. Dynamic section

A dynamic section (DS) is defined for a dynamic object whose
beginning and/or ending are triggered by non-splitting events. As
shown in Figure 4-(a), to create a DS for an object, the user has to

specify the position (anchor) and the length of the DS on the time
axis. Two events are associated with beginning and ending of the
object in the DS. That is, DS defines the time range of playback for
an object, but the actual starting time and ending time of the object
are determined until run-time. Thus, the positions of the two events
on the time axis are only for reference in authoring stage. As
illustrated in Figure 4-(b), DS can also control a group of parallel
objects such that the group acts just like a single object in the DS.
The authoring system should provide the option to disable/enable
events in a DS for more flexibility.

Given that the author may expect a dynamic object depending on a
former dynamic object. We propose a DS operator called connector
to support dependency between different dynamic sections. As
illustrated in Figure 5, beginning of DS2 depends on DS1’s ending,
and DS1’s ending depends on event Btn2.Click. By using DS
connector, the author can easily create a sequence of dependent
dynamic objects.

Original Timeline (TL) table

TL-Divide operation

5s 10s 15s 20s 0s 5s 10s 0s 18s 23s

?

Assume default TL-Divide space = 5s

TL1 TL2

Figure 2. TL-Divide operation

Shrink/Extend along time axis ? Non-deterministic event

13s

Figure 1. A sample SMIL2.0 code snippet and its corresponding E-RTSM model

<seq>
 <par endsync = “A1”>
 <audio id=A1>
 <video id=V1 begin=“Btn1.Click”

end=“Btn2.Click”>
 </par>
 <par begin=”Btn3.Click”>
 <audio id=A2>
 <video id=V2>
 </par>
</seq>

V1 V2

<par>

A1

 ?

 ?
Btn1.Click

Btn2.Click

 ?

Btn3.Click

endsync=A1

Virtual enforced place (enforced place with zero duration)

Virtual place (regular place with zero duration)

 ? Non-deterministic event

Dynamic arc

<par>

A2

5s 10s 0s 18s 23s

?

TL1 TL2 TL-Merge operation

5s 10s 0s 18s 23s

Assume default TL-Merge space = 5s

Figure 3. TL-Merge operation

13s

 3

3. CONVERTING DDTL TO SMIL2.0

The editing result of DDTL needs to be converted to SMIL2.0 format
and saved as a SMIL document for future playback on a SMIL player.
We had developed a converting algorithm from deterministic timeline
data to SMIL1.0 in our previous work [6]. We only present the
converting mechanisms for dividable timeline and dynamic section in
this paper, and the mechanisms can be easily integrated into the
original converting algorithm in our previous work.

3.1. Converting algorithm for DDTL

Since the two separated timeline tables resulted from TL-Divide
operation have a sequential relation, a parent <seq> time container is
created for the two timeline tables, and the root time container of the
latter timeline table must set its <begin> attribute the
non-deterministic event. Figure 6 shows the code snippet for the
result of TL-Divide in Figure 2.

To convert a DS to SMIL2.0, we need to know that there are two
run-time cases ending a DS as well as the dynamic object in the DS:
(1) the viewer triggers the ending event for the object, or (2) no
ending event triggered but the preset ending time of the DS (which is
according to the length of the DS) is reached. Therefore, in the
conversion, we need to create a parent time container <par> for the
object and set the <end> attribute of the <par> to reflect the above
two cases. Figure 7-(a) shows the code snippet for the DS in Figure

4-(a), in which the <end> attribute of the parent element <par> is a
list of two cases to end the DS (i.e. event Btn2.Click or time T1 is
reached). The <begin> attribute in the parent <par> specifies the
location of the DS on the time axis, and the <begin> attribute of the
object defines the triggered event for starting the object. Similarly,
the conversion of the DS containing a group of objects (Figure 4-(b))
is shown in Figure 7-(b).

For a sequence of dynamic sections connected by DS connectors, we
need to create a parent <seq> for all DS in the sequence. The code
snippet for a sequence of DS (Figure 5) is displayed in Figure 8.
Please note that the time base of the first DS (DS1, with an anchor)
and the time base of the other DS (DS2 and the following) are
different, which is reflected in the calculation of the ending time of
the root <par> element for each DS.

Due to the limit of paper length, the detailed algorithm for converting
DDTL to SMIL2.0 is not presented in the paper. Instead, we give a
typical example of the conversion. A sample DDTL editing result is

Figure 4. Dynamic section in a timeline table

(a) For a single object

Anchor of the dynamic section

Timeline of the object

? ?

Time axis

Btn2.Click

T0 TS TE

Anchor

T1

V1

Btn1.Click

DS

0s

? ?

Time axis

Btn2.Click

T0 TS TE

Anchor

T1

V1

Btn1.Click

A1

Tx1
DS

0s

(b) For a group of parallel objects

Figure 5. Connecting two dependent DS

? ?

Time axis

Btn2.Click

T0 TS TE

Anchor

T1

V1

Btn1.Click

? ?
Btn4.Click

(No anchor)

T2

V2

Btn3.Click Connector

DS1

DS2

Connector of sequential relation for dynamic sections
… …

0s
<seq>
 <TL1>

<TL2 begin=“Btn.Click”>
</seq>

Figure 6. SMIL code snippet for TL-Divide

<par begin=“T0–0s”end=“Btn2.Click; T1–0s”>
 <par begin=“Btn1.Click”>
 <video id=V1>
 <audio id=A1>
 <text id=Tx1>
 </par>
</par>
/*** note that DS’s time base is 0s ***/

<par begin= “T0–0s”end=“Btn2.Click; T1–0s”>
 <video id=V1 begin=“Btn1.Click” >
</par>
/*** note that DS’s time base is 0s ***/

Figure 7. SMIL code snippet for the DS in Fig. 4

(a) Single object in DS

(b) Group of objects in DS

 4

displayed in Figure 9. The corresponding SMIL2.0 code snippet for
that sample is shown in Figure 10.

4. CONCLUSION AND FUTURE WORK

In this paper, we present our first effort towards supporting of
SMIL2.0 authoring by timeline-based editing. The concept of
Dividable Dynamic Timeline (DDTL) is proposed, which includes
two novel features, dividable timeline and dynamic section, to extend
the original timeline scheme with the support of non-deterministic
temporal behavior. Mechanisms for converting DDTL data to
SMIL2.0 format are also proposed in the paper. In summary, DDTL
features the easy-learning characteristic of timeline and to some
extent allows authors to compose interactive multimedia
presentations. The implementation of extending our previous
SMIL1.0 authoring system to support DDTL is currently under way.

Apparently, DDTL (and other timeline-based editing schemes) cannot
cover the whole set of non-deterministic temporal behaviors
supported by SMIL2.0. Thus, in addition to the implementation, we
will also explore more about the potential of DDTL in supporting
SMIL2.0 authoring. To make authoring more efficient, an authoring
system needs to provide reuse of SMIL scripts, which involves the
conversion of SMIL2.0 scripts to DDTL. Reuse of SMIL scripts in
DDTL-based authoring is addressed in another paper [12].

REFERENCES
[1] Synchronized Multimedia Integration Language (SMIL) 2.0

Specification, W3C Recommendation, 2001,
http://www.w3.org/TR/smil20

[2] D.C.A. Bulterman, “SMIL 2.0 part 1: overview, concepts, and
structure,” IEEE Multimedia, Volume: 8 Issue: 4, Oct.-Dec.
2001, Page(s): 82 –88

[3] D.C.A. Bulterman, “SMIL 2.0. 2. Examples and comparisons,”
IEEE Multimedia, Volume: 9 Issue: 1, Jan.-March 2002, Page(s):
74 –84

[4] C. C. Yang, “Design of the Data-Retrieving Engine for
Distributed Multimedia Presentations,” Proceedings, IEEE
International Conference on Communications, 2001 (ICC2001),
pp. 3237-3243.

[5] C. C. Yang, “User-Interaction Supported Data- Retrieving
Engine for Distributed Multimedia Presentations,” Proceedings,
IEEE International Conference on Communications, 2001
(ICC2001), pp. 3244-3250.

[6] C. C. Yang and Y. Z. Yang, “SMILAuthor: an Authoring System

for SMIL-based Multimedia Presentations,” Journal of
Multimedia Tools and Applications, vol. 21, no. 3, December
2003, pp. 243-260.
http://www.csie.ncnu.edu.tw/~ccyang/Publication/MTAP2003.pdf

[7] C. C. Yang, C. W. Tien, and Y. C. Wang, “Modeling of the
Non-deterministic Synchronization Behaviors in SMIL2.0
Documents,” Proceedings, IEEE International Conference on
Multimedia and Expo (ICME), Vol. 3, 6-9 July 2003, pp.
265-268.

[8] C. C. Yang, C. W. Tien, and Y. C. Wang, “Supporting VCR-like
Operations in SMIL2.0 Players,” Proceedings, IEEE
International Conference on Multimedia and Expo (ICME), Vol.
2, 6-9 July 2003, pp. 761-764.

[9] Yoshihisa Gonno, “SMIL 2.0 Extension for Professional
Multimedia Authoring: Preliminary Investigation,” W3C Note,
12 May 2003.
http://www.w3.org/TR/2003/NOTE-SMIL2-AuthExt-20030512

[10] O. Gaggi and A. Celentano, “A visual authoring environment
for prototyping multimedia presentations,” Proceedings, 4th
International Symposium on Multimedia Software Engineering,
11-13 Dec. 2002, pp. 206 –213.

[11] GRiNS, http://www.oratrix.com/GRiNS/index.html
[12] C. C. Yang, Y. C. Wang, and C. K. Chu, “Reuse of SMIL2.0

scripts in Dividable Dynamic Timeline-based Authoring,” also
in Proceedings of IEEE International Conference on Multimedia
and Expo (ICME), 2004.

<seq>
 <par id=TL1>
 <seq>
 <audio id=A1 begin=“4s” dur=“12s-4s”>
 <audio id=A2 begin=“16s-12s” dur=“22s-16s”>
 </seq>
 <par id=DS1 begin=“4s”, end=“Btn2.Click;16s”>
 <video id=V1 begin=“Btn1.Click”>
 </par>
 </par>
 <par id=TL2 begin=“Btn3.Click”>
 <audio id=A3 begin=“0s” dur=“47s-27s”>
 <seq>
 <par id=DS2 begin=“0s” end=“Btn5.Click;39s-27s”>
 <video id=V2 begin=“Btn4.Click”>
 </par>
 <par id=DS3 end=“Btn7.Click;49s-37s”>
 <video id=V3 begin=“Btn6.Click”>
 </par>
 </seq>
 </par>
</seq>

Figure 10. SMIL code snippet for the example in Figure 9

A1

4s 12s 0s 47s

3
A2

TL1

TL2

16s 22s

V1

2 1

27s 49s

DS1

DS2

A3

V2

5 4

V3

7 6

DS3

39s 37s

Figure 9. Sample DDTL editing result

<seq>
 <par id=DS1 begin=T0–0s end=“Btn2.Click; T1–0s”>
 <video id=V1 begin=“Btn1.Click”>
 </par>
 <par id=DS2 end=“Btn4.Click; T2-TE (DS2 Length)”>
 <video id=V2 begin=“Btn3.Click”>
 </par>
 …… /* for following DS, if any */
</seq>
/*** DS1’s time base is 0s ***/
/*** DS2’s time base is the end of DS1 ***/

Figure 8. SMIL code snippet for the sequence of DS in Figure 5

