
Modeling of the Non-Deterministic Synchronization Behaviors
in SMIL2.0 Documents

Chun-Chuan Yang, Chih-Wen Tien, and Yung-Chi Wang
Multimedia and Communications Laboratory

Department of Computer Science and Information Engineering
National Chi Nan University, Taiwan, R.O.C.

ccyang@csie.ncnu.edu.tw

ABSTRACT

A novel model namely Extended Real-Time Synchronization
Model (E-RTSM) for modeling SMIL2.0 synchronization
behaviors is proposed in this paper. E-RTSM deals with
schedule-based synchronization as well as event-based
synchronization in SMIL2.0. Converting of the temporal
relationship of a SMIL2.0 document to E-RTSM is presented.
Moreover, design of the E-RTSM-based data-retrieving engine for
SMIL2.0 presentations is also proposed in the paper. The
data-retrieving engine estimates the worst-case playback time of
each object at the parsing stage and applying an error
compensation mechanism at run-time to adjust the estimated
playback time as well as the schedule of the fetching request for
data retrieval.

1. INTRODUCTION

Synchronized Multimedia Integration Language (SMIL) [1-4] was
developed by WWW Consortium to address the lack of HTML for
multimedia over WWW. With the introduction of SMIL, Web
multimedia creators have a new tool for building time-based
multimedia presentations that combine audio, video, images,
animations, text, etc. There are two versions of SMIL
specification that have been released. The first version of SMIL
(SMIL1.0) [1] is primarily a scheduling model, but with some
flexibility to support continuous media with unknown duration.

The second version of SMIL (SMIL2.0) [2-4] enhances SMIL1.0
by providing a strong support for user interaction with a
declarative event-based timing. Event-based timing in SMIL2.0
presents the non-deterministic synchronization behavior such that
the player cannot get the accurate playback time (and duration) for
a media object as well as the total length of a presentation before
run-time.

In our previous work [5, 6], we have developed modeling and
converting techniques for parsing SMIL1.0 documents. Real-Time
Synchronization Model (RTSM) [7] was used for modeling the
temporal relationship in SMIL1.0 documents. Based on RTSM, an
efficient data-retrieving engine was proposed. However, the
proposed techniques in our previous work cannot be applied to
SMIL2.0 directly. Extensions of RTSM as well as the
modification of the converting algorithm are necessary to cope
with non-deterministic features in SMIL2.0. In this paper, we
propose Extended RTSM (E-RTSM) and the converting algorithm

to present the temporal relationship in a SMIL2.0 document.
Moreover, we apply E-RTSM in data retrieval and propose an
E-RTSM-based data-retrieving engine.

It is worth mentioning that not much of the research work in the
literature is concerning with modeling of non-deterministic
temporal behaviors in multimedia presentations [8, 9], and it
seems that none of the existing modeling techniques focuses on
SMIL2.0 presentations.

The rest of the paper is structured as follows. First of all, we make
a brief survey of original RTSM before Extended RTSM is
presented in section 2. The converting algorithm from SMIL2.0 to
E-RTSM is presented in section 3. The data-retrieving engine
designed for SMIL2.0 presentations is presented in section 4.
Finally, section 5 concludes this paper.

2. EXTENDED RTSM

2.1. Brief survey of RTSM for SMIL1.0

Real-Time Synchronization Model (RTSM) was proposed to
address the lack of Petri-net based models for dealing with
real-time synchronization. There are two kinds of places in RTSM,
regular places and enforced places. The firing rule of RTSM
specifies that once an enforced place becomes unblocked (i.e.
related action with the place is completed), the following
transition will be immediately fired regardless the states of other
places feeding the same transition. With the enforced firing rule,
temporal relationship of objects in a SMIL1.0 document can be
easily represented by RTSM. For example, Figure 2 shows the
RTSM model for the sample SMIL1.0 code snippet in Figure 1.

2.2. Extended RTSM

Major differences between SMIL1.0 and SMIL2.0 in timing
control include: (1) Values of <begin> and <end> attributes for an
object (or time containers <par> and <seq>) can be
non-deterministic events, i.e. events with unknown occurring
times such as Mouse-Click events or Key-Pressed events. (2)
Multiple values for <begin> and <end> attributes are allowable
for media objects and time containers. (3) Some complicated
synchronization features such as <restart> and <min/max>
attributes are also defined in SMIL2.0.

In order to cope with the non-deterministic synchronization
behaviors of SMIL2.0, three mechanisms are added in E-RTSM.

(1) Allowing a place in E-RTSM to be mapped to a
non-deterministic event. (2) Dynamic Arc is defined for the places
of non-deterministic events. (3) Run-time controllers for
complicated synchronization features are defined.

Dynamic Arc (denoted by dashed arrow in E-RTSM) is used to
replace the normal arc following a non-deterministic event place.
A dynamic arc is changed to a normal arc when the event occurs
at run-time. For example, in Figure 3, the playback time of object
A2 depends on A1 and the non-deterministic event. Two run-time
cases may happen: (1) A2 is played when the playback of A1 is
finished as long as the event does not occur during the playback of
A1. In this case, the event does not have any effect on the firing
time of the starting transition of A2. (2) If the event occurs while
A1 is playing, the dynamic arc is changed to a normal one and
that fires the following transition. Thus, A1 is stopped and A2 is
played right after the event has occurred.

Run-time controllers are used to model complicated timing
features in SMIL2.0 that are difficult to be represented by
combination of other basic elements (arc, transition, place). By
using run-time controllers in E-RTSM, handling of these
complicated timing features is delayed until run-time, instead of
the modeling (parsing) phase. Usage of the run-time controllers
for SMIL2.0 elements is presented in the next section.

3. CONVERTING SMIL TO E-RTSM

In this section, we focus on converting major differences between
SMIL2.0 and SMIL1.0 mentioned in section 2. The rest of the
conversion for SMIL2.0 is similar to the conversion of SMIL1.0
in our previous work [5].

3.1. Converting Begin and End Attributes

We can classify the values of <begin> and <end> attributes to two
types of event values: Time value event (event with a known
occurring time, e.g., Clock-value) and Non-deterministic event
(Mouse-Click, Key-Pressed, etc). A time value event is converted
to an enforced place with duration specified by the event as in
SMIL1.0 conversion. On the other hand, a non-deterministic event
is converted to an enforced place that maps to that event. Thus,
the following arc of a non-deterministic event place should be a
dynamic arc.

E-RTSM for an element (media element or time container) with
multiple <begin> values and <end> values is illustrated in Figure
4. Note that in the figure, the starting transition of
non-deterministic event values in End-value-list is different from
that of time value events. The reason is: SMIL2.0 specifies that a
non-deterministic event in End-value-list does not have any effect
on an element until the element has been activated.

3.2. Using the run-time controller

Currently, three run-time controllers (Figure 5) are defined in
E-RTSM: Restart controller, Min controller, and Repeat
controller. SMIL2.0 allows an element to be restarted multiple
times during the element’s active duration. The behavior is
controlled by the <restart> attribute. Restart controller is used
when the value of the <restart> attribute of an element equals
“always” or “whenNotActive”.

SMIL2.0 also allows the author to control the lower and upper
bound of the element active duration by using the <min/max>
attributes. Min controller is used when the <min> attribute is
presented for an element. The effect of the <max> attribute is
similar to that of a time value event in End-value-list as shown in
Figure 5. Repeat controller is used when either the <repeatCount>
attribute or the <repeatDur> attribute is presented for an element.

3.3. Example

The sample SMIL2.0 code snippet in Figure 6 is used to illustrate
the converting process. Note that the SMIL2.0 sample is similar to
the sample in Figure 1 except some non-deterministic events are
presented in the SMIL2.0 sample. The final E-RTSM for the
SMIL2.0 sample is displayed in Figure 7.

4. DESIGN OF THE DATA-RETRIEVING ENGINE

E-RTSM can be applied in designing the data-retrieving engine
for SMIL2.0 documents. The data-retrieving engine is responsible
for retrieving proper media data for the playback of a presentation.
The concept of just-in-time data retrieving is proposed in our
previous work for SMIL1.0 presentations [5]. Just-in-time data
retrieving expects the retrieval process for an object to be finished
right before the playback time for the object so that the player is
able to continue the presentation smoothly. Thus, the

Figure 1. A SMIL1.0 code snippet

<seq>
 <par endsync=A1>
 <audio id=A1>
 <text id=X1>
 </par>

 <par endsync=A2>
 <audio id=A2>
 <text id=X2>
 </par>

 <par endsync=A3>
 <audio id=A3>
 <text id=X3>
 </par>
</seq>
...

 ?

Non-deterministic event

A1

Dynamic Arc

Figure 3. Using Dynamic Arc in E-RTSM

A2

X1

A1

I1

10s

Figure 2. RTSM for the sample in Figure 1

Transition Arc Regular place Enforced place

X2

A2

I2

10s

X3

A3

 T

Obj

 T

 ?

 ?

…

…

 T

 T

 ?

 ?

…

…

Begin-value-list

End-value-list

 ?

 T

Non-deterministic

Time value

Figure 4. Converting Begin-value-list
and End-value-list

data-retrieving engine needs to compute the playback time for
each object. The request time for an object is then calculated
according to its playback time and bandwidth estimation.

For SMIL2.0 presentations, the accurate playback time for an
object cannot be obtained before run-time because of the
non-deterministic events. Instead, the data-retrieving engine
calculates the worst-case (earliest) playback time for each object
at the parsing stage, and at run-time applying an error
compensation mechanism for adjusting the estimated playback
time as well as the request time. Overview of the proposed data
retrieving process is illustrated in Figure 8.

4.1. Calculation of the worst-case playback time

At the parsing stage, the document is first converted to E-RTSM.
The data-retrieving engine reduces E-RTSM by removing the
regular places that have no effect on the firing time of a transition.
As an example, Figure 9 is the reduced E-RTSM for Figure 7. The
data-retrieving engine calculates the worst-case playback time for
each object by assigning the duration of all non-deterministic
events to zero and traversing the reduced E-RTSM. Dynamic arcs
in the reduced E-RTSM are treated as normal arcs in the
worst-case calculation of the playback time.

The playback time for an object is the firing time of its starting

transition. There are only two possibilities for a transition in the
reduced E-RTSM: (1) places feeding to the transition are all
enforced places, or (2) places feeding to the transition are all
regular places. For case (1), the firing time of the transition is the
minimal value of “the firing time of the preceding transition” +
“the duration of the following place”, which is illustrated in
Figure 10-(a). The firing time of the transition for case (2) is
instead the maximum value of its predecessors as illustrated in
Figure 10-(b). The duration of each place depends on the type of
the media object. For static media objects such as and
<text>, the duration of the place is zero. For continuous media
object like <audio> and <video>, the duration of the place is the
implicit duration of the object that is provided by the data server.
Since the objects stored in a data server are all pre-orchestrated, it
is easy for the data server to obtain the implicit duration of a
continuous object. As mentioned in the last paragraph, the
duration of places that map to a non-deterministic event is set zero
in the worst-case calculation.

During the traversal process of calculating the firing time of each
transition, we also need to deal with the run-time controllers to get
more accurate values for the worst-case playback time. The
Restart controller deals with events that could restart an element
during the active duration of the element, so the worst case would
be no restart at all. Thus, the restart controller is ignored in the

Figure 5. Run-time controllers
in E-RTSM

Restart Controller

Obj

Begin-value-list

End-value-list

Min Controller

Repeat Controller

 T
max

Figure 7. Final E-RTSM for the sample SMIL2.0 code snippet

X1

 A1

I1

10s

 ?

Btn1.Click ?

Btn2.Click

I2

 ?

Btn2.Click

10s

X2

 A2

 ?

Btn1.Click

X3

 A3

 ?

Btn1.Click

Figure 9. Reduced E-RTSM for the sample SMIL2.0 code snippet

X1

 A1

I1

10s

 ?

Btn1.Click ?

Btn2.Click

I2

 ?

Btn2.Click

10s

X2

 A2

 ?

Btn1.Click

X3

 A3

 ?

Btn1.Click

<seq>
 <par endsync=A1>
 <audio id=A1>
 <text begin=”Btn1.Click” id=X1>
 </par>

 <par endsync=A2>
 <audio id=A2>
 <text begin=”Btn1.Click” id=X2>
 </par>

 <par endsync=A3>
 <audio id=A3>
 <text begin=”Btn1.Click” id=X3>
 </par>
</seq>
...

Figure 6. A SMIL2.0 code snippet

SMIL 2.0 document

E-RTSM

1. Converting

Compute the request time
to fetch media data

2. Calculation of worst-case playback time

Bandwidth
estimation

3. Error compensation
of estimated playback
time (at run-time)

Schedule fetching requests
according to the request time

Figure 8. Data retrieving for SMIL2.0 documents

worst-case calculation. The Min controller specifies a lower
bound of the duration between the beginning transition and the
ending transition of an element, so the firing time of the ending
transition should be updated if the estimated duration is smaller
than the <min> value. The Repeat controller deals with the
<repeatDur> attribute as well as the <repeatCount> attribute. The
<repeatDur> attribute sets the duration of repeating an element,
so the firing time of the ending transition should be the end of the
repeat duration. The <repeatCount> attribute specifies times of
repeating for an element, thus the final firing time of the ending
transition is extended as many times as specified by the
<repeatCount> value. Update of the firing time of a transition
with the run-time controllers is illustrated in Figure 11.

For example, assuming the intrinsic durations for A1, A2, and A3
are all 10s, the worst-case playback time for each object in Figure
9 is: A1= 0s, X1=0s, I1=10s, A2=10s, X2=10s, I2=20s, A3=20s,
X3=20s. (Note that these values are relative to the starting time of
the presentation)

4.2. Error compensation at run-time

Apparently, the actual playback time for an object at run-time is
no earlier than the worst-case estimation. The difference (error of
estimation) between the actual playback time and the worst-case
estimation can be used to adjust the estimated playback time of
the following objects that are not played yet. For example, if the
event Btn2.Click in Figure 9 has occurred when I1 has been
played 8s, we can then update the estimated playback time of the
following objects: A2=18s, X2=18s, I2=28s, A3=28s, X3=28s.
New estimation of the playback time is then used to re-calculate
the new request time. The new request time for an object may not
change the schedule of the fetching request since the request
probably had already issued to retrieve the data. But the error
compensation mechanism does make the estimated playback time
of later objects more close to reality and it also makes data
retrieval more intelligent.

5. CONCLUSION AND FUTURE WORK

In this paper, modeling of the non-deterministic synchronization
behaviors in SMIL2.0 presentations has been presented. The
proposed model namely Extended Real-Time Synchronization
Model (E-RTSM) is the extension of our previous work for
SMIL1.0 modeling. Based on E-RTSM, we propose a

data-retrieving engine for SMIL2.0 presentations. The
experimental platform previously developed for SMIL1.0 is
currently being extended for supporting SMIL2.0. The future
work of this paper includes modeling and handling of other
complicated timing features in SMIL2.0 such as the <excl>
element, the <priorityClass> element, etc.

REFERENCES

[1] Synchronized Multimedia Integration Language (SMIL) 1.0
Specification, W3C Recommendation, June 1998,
http://www.w3c.org/TR/REC-smil.

[2] Synchronized Multimedia Integration Language (SMIL) 2.0
Specification, W3C Recommendation, 2001,
http://www.w3.org/TR/smil20

[3] D.C.A. Bulterman, “SMIL 2.0 part 1: overview, concepts,
and structure,” IEEE Multimedia, Volume: 8 Issue: 4,
Oct.-Dec. 2001, Page(s): 82 –88

[4] D.C.A. Bulterman, “SMIL 2.0. 2. Examples and
comparisons,” IEEE Multimedia, Volume: 9 Issue: 1,
Jan.-March 2002, Page(s): 74 –84

[5] C. C. Yang, “Design of the Data-Retrieving Engine for
Distributed Multimedia Presentations,” Proceedings, IEEE
International Conference on Communications, 2001
(ICC2001), pp. 3237-3243.

[6] C. C. Yang, “User-Interaction Supported Data- Retrieving
Engine for Distributed Multimedia Presentations,”
Proceedings, IEEE International Conference on
Communications, 2001 (ICC2001), pp. 3244-3250.

[7] C. C. Yang and J. H. Huang, “A Multimedia Synchronization
Model and its Implementation in Transport protocols,” IEEE
Journal of Selected Area in Communications, vol. 14, No. 1,
pp. 212-225, Jan. 1996.

[8] P. Diaz, I. Aedo, and F. Panetsos, “Modeling the Dynamic
Behavior of Hypermedia Applications,” IEEE trans. on
Software Engineering, vol. 27, no. 6, June 2001, pp.
550-572.

[9] J. B. D. Joshi, Z. K. Li, H. Fahmi, B. Shafiq, and A. Ghafoor,
“A Model for Secure Multimedia Document Database
System in a Distributed Environment,” IEEE trans. on
Multimedia, vol. 4, no. 2, June 2002, pp. 215-234.

Figure 10. Determine the firing time for transition Tx

(a) Tx = Min(T1+D1, … , Tn+Dn) (b) Tx = Max(T1+D1, … , Tn+Dn)

…

T1

T2

Tn

Tx

D1

D2

Dn

…

T1

T2

Tn

Tx

D1

D2

Dn

…

…

…

…

…

…

Figure 11. Impact of the run-time controllers on the
worst-case firing time

Restart Controller

Obj

Min Controller

Repeat Controller

TS TE => TE’

TE is the firing time w/o considering run-time controllers
TE’ is the updated firing time
TrepeatDur is the value of <repeatDur> attribute
CrepeatCount is the value of <repeatCount> attribute
Tmin is the value of <min> attribute

TE’ = TS + Max (TE – TS, Tmin)

TE’ = TS + TrepeatDur , or
TE’ = TS + CrepeatCount * (TE - TS)

