

Design of the Authoring System for SMIL-based Multimedia Presentations

Chun-Chuan Yang and Yi-Zheng Yang

Multimedia and Communications Laboratory
Department of Computer Science and Information Engineering

National Chi Nan University, Taiwan, R.O.C.
ccyang@csie.ncnu.edu.tw

Abstract

In this paper, design issues for the authoring
system of SMIL-based multimedia presentations are
discussed and the solutions to these issues are
presented. The proposed authoring system accepts
the SMIL file as the input and provides useful editing
functions, such as clear, cut, copy, and paste. The
editing result of the presentation is finally saved in
the SMIL format. For the input of a SMIL file, the
authoring system first parses the document to
compute the playback duration for each object. All
editing functions are then performed on the playback
duration of objects. A converting algorithm is
proposed to convert the final result of editing to a
SMIL file.

Keywords: Multimedia, Authoring, SMIL, RTSM

1. Introduction

Multimedia presentation is concerning with the
integration of multimedia objects, which maybe
locate at remote data servers. To provide a useful tool
for composing presentations, an authoring system
with easy-to-use editing functions is necessary.
Design issues about the authoring system for
multimedia presentations include the design of the
user-interface [1-2], the format of the multimedia
presentations [3-6], the mechanisms for supporting
the editing functions [7-9], etc. The format of the
presentation plays an important role for the authoring
system, since it affects the popularity of the
presentation. Unfortunately, different authoring
systems usually have different format of presentation.

It is better to adopt a popular language as the format
of multimedia presentation [6].

From the popularity point of view, HTML seems
to be the best candidate. However, the lack of the
ability in integrating synchronized multimedia for
HTML makes it improper to be the language of
multimedia presentations. Synchronized Multimedia
Integration Language (SMIL) [10-13] was developed
by the WWW Consortium (W3C) to address the lack
of HTML for multimedia over WWW. It provides an
easy way to compose multimedia presentations. With
the efforts of W3C, SMIL is becoming the most
popular language in authoring multimedia and it is
currently supported by the newest versions of
commercial browsers. This paper thus focuses on the
SMIL-based presentations and proposes architecture
of the authoring system. We make a brief
introduction to SMIL in the following.

SMIL could be used to describe both the spatial
relationship and temporal relationship of a
multimedia presentation. The spatial relationship is
concerning with the visual layout of the presentation,
while the temporal relationship is concerning with
the timing control of media objects. The elements for
spatial relationship in SMIL include the <layout>
element and the <region> element. The <layout>
element determines how the elements in the
document’s body are positioned. The <region>
element controls the position, the size , and scaling of
media elements.

The synchronization elements in SMIL for
temporal relationship include the <seq> element, the
<par> element, and the class of media elements such

a s , <video>, <audio> and <text>, etc. The
<seq> element defines a sequence of elements in
which elements play one after the other. The <par>
element defines a simple parallel time grouping in
which multiple elements can play back at the same
time. Both <seq> and <par> allow the nested
structure that means the children element of them
could be any of the synchronization elements. The
media elements allow the inclusion of media objects
into an SMIL presentation. Media objects are
included by reference (using a URI). Besides, some
synchronization related attributes such as “begin”,
“dur”, and “end” could be associated with these
synchronization elements.

The remainder of the paper is organized as
follows. First of all, the overview of the authoring
system is presented in section 2. The parsing process
to comp ute the playback duration of each object in a
SMIL file is presented in section 3. The editing
functions are presented in section 4, and the
converting algorithm for saving the editing result in
the SMIL format is presented in section 5. Finally,
section 6 concludes this paper.

2. Overview of the s ystem

The major task for an authoring system is to
provide useful functions for composing multimedia
presentations. The authoring process is usually
composed of importing an existing presentation,
editing operations, and finally saving the result, as
illustrated in Figure 1.

The proposed authoring system focuses on the
SMIL-based presentations; however, editing
functions such as cut, copy, and paste are difficult to
be realized in the manner of language, since these
functions always involve the manipulation of time
for each object. Thus, it is better to perform the
editing functions in the time domain, instead of the
language domain. In other words, the editing
functions in the system are timeline-based. This is the
reason why the input step in Figure 1 requires
computing the playback duration for each object

In the previous work, an algorithm calculating
the playback duration of objects in a SMIL file was
proposed [16]. Temporal relationship of the input
script is ext racted and represented by the Real-time
Synchronization Model (RTSM) [15]. The playback
duration for each object is then computed by
traversing the model. The parsing process is briefly
explained in section 3.

Editing function supported by the system should
include spatial editing functions and temporal editing
functions. Spatial editing is concerning with the
visual layout, while temporal editing is concerning
with the timing property of each object. Visual
objects (such as video, image, text, etc) must be
associated with a display region defined by the
spatial editing functions. Hence, we could treat the
display region for a visual object as one of its
attributes. As shown in Figure 1, the editing functions,
such as clear, cut, copy, and paste are performed on
the playback duration of the object. The final result is
represented in the SMIL format and is saved to a file.

3. Parsing SMIL

In this section, we make a survey for RTSM first
and then briefly explain the parsing process by giving
an example. For more details of the parsing process,
please refer to the previous work [16].

SMIL

Insert new
objects (URIs)

INPUT

EDIT

OUTPUT

RTSM

Convert

Playback Duration
for each object

Compute

Clear

Cut Copy

Paste

Convert

SMIL

Spatial Editing
(visual layout)

Figure 1. Overview of the authoring process

3.1 Survey of RTSM

The elements in RTSM include place, token, and
transition as in Object Composition Petri Net (OCPN)
[14]. However, there are two kinds of places in
RTSM, regular places and enforced places . A
different firing rule for enforced places is defined.
The rule specifies that once an enforced place
becomes unblocked, the following transition will be
immediately fired regardless the states of other
places feeding the same transition.

An example of RTSM is shown in Figure 2 in
which a single circle is for the regular place, a double
circle is for the enforced place, and a bar is drawn for
the transition. The RTSM in the figure requires that
the audio segment audio1 , the video clip video1 and
the text data text1 be played simultaneously. Since
audio1 is an enforced place, transition T1 is fired
right after audio1 is finished, regardless of whether
video1 or text1 has finished or not. After firing T1,
image1 is displayed for 5 seconds then transition T2
is fired. Finally, audio2 is played for 10 seconds after

T2 fires. Note that the enforced place of “5s” in the
figure is not a media object but a virtual medium that
is called Time Medium [15]. The time medium is
used to represent time duration.

3.2 An example for the parsing process

The SMIL script in Figure 3 requires the player
to play the audio object URI-1, the video object
URI-2 and text object URI-3 synchronously since
these three objects are contained in a <par> element.
The value of the “endsync” attribute in the <par>
element requires <par> to end with the end of the
audio object URI-1 . In other words, once the audio
object URI-1 finishes playing, the video object URI-2
and the text object URI-3 must also stop playing at
the same time. After the <par> element, the player
has to display the image object URI-4 for 5 seconds,
and then play the audio object URI-5 for 10 seconds.
The obtained RTSM for the sample SMIL document
after the converting process is shown in Figure 4.
The enforced place (double circle) is defined to be
the dominated place for firing the following
transition, and the virtual place (dashed circle) is a
place with zero duration.

Simplifying process is then invoked to remove
the redundancy of the obtained RTSM. The
simplified RTSM for the example is displayed in
Figure 5. After that, reducing process removes places
that feed into the same transition with an enforced
place, and the reduced RTSM for the sample is
shown in Figure 6.

audio1

text1

video1

image1

5s

audio2

10s

Figure 2. An example of RTSM

T1 T2

<seq>
<par endsync = id(URI-1)>

 <audio src=URI-1 />
 <video src=URI-2 />
 <text src=URI-3 />

</par>

<audio src=URI-5, dur= “10s” />

</seq>

Figure 3. Sample SMIL Document

URI-1

URI-2

Figure 4. RTSM for the sample SMIL document

0s 0s

initial
place

URI-3

URI-4

5s

URI-5

10s

T 1

T 2

T 3

T 4

<par> <audi o>

<text>

: virtual enforced place

: virtual place

The playback duration for each object is actually
from firing of the start transition to firing of the end
transition in the reduced RTSM. The duration is
computed by traversing the reduced RTSM started
from the initial place. We illustrate the playback
duration for objects of the example in Figure 7. The
playback duration for each object is recorded for the
editing functions presented in the next section.

4. Editing functions

After the parsing process, all media objects with
corresponding attributes such as URI, display region
(created by spatial editing), playback duration, etc.
are stored in the object table. The playback duration
for an object is denoted by (s

objT , e
objT) in the paper.

The playback duration means that the object should
be played out in the time interval after the
presentation is started. The editing functions are then
performed on the playback duration. In the following,
we present the mechanism for each editing function.
Note that only the mechanism for realization of the
function is presented, the design issue of the user
interface is not addressed in the paper.

4.1 Insert new objects

Inserting a new object to the presentation means
to add a new object to the object table. The user has
to provide the values of attributes (URI, display
region, playback duration, etc.) for the inserted object.
For visual objects, we define the spatial -temporal
conflict as the case that visual objects with the same
display position have overlap in their playback
periods. The visual objects that will be played out
concurrently should not occupy the same display
position. Therefore, the authoring system rejects the
insertion request if there is a spatial-temporal conflict
between the new visual object and those in the object
table.

4.2 Modify object’s attributes

The user could change the attributes of the
objects in the object table. For example, the user may
change the playback duration of an object by setting
new values of (s

objT , e
objT) for the object, which reflects

the action of moving, enlarging, or shortening the
playback period of the object along the time line.
Again, any modification of attributes for visual
objects has to pass the test of spatial-temporal
conflict.

4.3 Clear

The clear function could be used to clear (part of)
an object in the object table. In addition, the system
also allows the user to clear a zone in the time line. A
new object type named zone is defined to
differentiate from the normal objects. When the user
specifies a time zone to clear, all objects within the
zone are cleared. The algorithm for the clear function
is shown Figure 8 and an example is given in Figure

Figure 5. Simplified RTSM for the example

URI-1

URI-2

0s

initial
place

URI-3

URI-4

5s

URI-5

10s

Figure 6. Reduced RTSM for the example

URI-1

URI-2

0s

initial
place

URI-3

URI-4

5s

URI-5

10s

Figure 7. Object playback duration for the
example.

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

Time

9, in which case (a) shows the case of clearing an
object, and case (b) shows the case of clearing a time
zone. Notice that the clearing action would
sometimes result in the division of an object. For
static objects like image and text, the division is
merely reflected by setting new values for the
playback periods. However, for continuous objects
like video and audio, the division requires the
authoring system to relocate the corresponding part
of the medium data. Same situation happens in other
editing functions.

4.4 Cut and Copy

The cut function provides a way to cut (part of)
an object or a time zone and to save the cutting part
in the clipboard for pasting. The cutting action for an
object is similar to that of the clear function except
that the cut part of the object is saved in the clipboard.
However, cutting a time zone not only moves all
objects within the specified time zone to the
clipboard but also advances the playback periods by
the length of the time zone for the objects, which are
in back of the time zone. The algorithm of the cut
function is displayed in Figure 10, and an example is
given in Figure 11.

The copy function is similar to the cut function
in the algorithm of saving objects in the clipboard,
except that the copy function does not result in any
change in the object table.

4.5 Paste

The paste function provides the user to paste the
objects in the clipboard at some time point of the
presentation. The paste action depends on the types
of object stored in the clipboard. If only one single
object in the clipboard, the paste action is similar to
that of inserting a new object, in which the user could
specify the time point and the display position for
inserting the object. On the other hand, if a time zone
object is stored in the clipboard, the paste function
inserts the time zone (with all objects saved in the
zone) at the specified time point. Figure 12 shows
examples of the two cases for the paste function. The
algorithm of paste function is shown Figure 13. Note
that the algorithm does not allow the paste point

pasteT within the playback period of some objects to
reduce to complexity of paste function.

5. Save the result in SMIL

When user finishes the editing process and asks
the authoring system to save the result, the system
converts the objects in the object table to a SMIL file.
The converting algorithm has to deal with both the
spatial and temporal information of objects in the
object table. The spatial information created by the
spatial editing functions is concerning with the layout
of display region for visual objects, and it is easy to
convert the spatial information to the layout-related

Function Clear (objID,
s

clearT ,
e

clearT)
If objID = zone then perform the following clear action on the

objects whose (s
objT , e

objT) overlaps with (s
clearT , e

clearT).
(two periods do not overlap when

s
objT >

e
clearT or

e
objT < s

clearT)
if (

s
objT >=

s
clearT and

e
objT <=

e
clearT) then delete the object

else
 if

s
objT <

s
clearT and

e
objT >

e
clearT then split the object into

 two objects with periods (
s

objT ,
s

clearT) and (
e

clearT ,
e

objT)
 else if

s
clearT <

s
objT <

e
clearT then new

s
objT =

e
clearT

 else if
s

clearT <
e

objT <
e

clearT then new
e

objT =
s

clearT
Else
 Perform the above action on objID only

Figure 8. The algorithm for the clear function
0s

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s

Clear a
time zone

Figure 9. E.g., The <Clear> function

(a) Clear an object

(b) Clear a time zone

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

Clear an
object

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

URI-4

URI-5

10s 15s 25s 0s

elements in SMIL, such as <layout> and <region>.
On the other hand, since the playback periods of
objects may spread over the time line, the temporal
information is much more complicated than the
spatial information. The converting algorithm thus

focuses on the conversion of the temp oral
information to SMIL.

The temporal information consists of a set of
media objects each with its playback period. The
most straightforward way to convert the temporal
information is to treat all media objects as the
children of a root <par> element. The “begin”
attribute for each object is assigned to the playback
time s

objT of the object and the “dur” attribute is
assign to the length of the playback duration, i.e.

e
objT - s

objT . The straightforward conversion is simple
but introduces more overheads to the browser while
presenting the SMIL file. The reason is that the

Function Cut (objID,
s

cutT ,
e

cutT)
If objID = zone then
 For ? objects whose (s

objT , e
objT) overlaps with (s

cutT , e
cutT).

if (
s

objT >=
s

cutT and
e

cutT <=
e

objT) then save the whole
object in the clipboard and delete the object from the
object table.

else
 if

s
objT <

s
cutT and

e
objT >

e
cutT then split the object into

 two objects with periods (
s

objT ,
s

cutT) and (
e

cutT ,
e

objT)in
the object table, and save (

s
cutT ,

e
cutT) of the object in

the clipboard.
 else if

s
cutT <

s
objT <

e
cutT then

 save (
s

objT ,
e

cutT) of the object in the clipboard, and
new

s
objT =

e
cutT in the object table.

 else if
s

cutT <
e

objT <
e

cutT then
 save (s

cutT , e
objT) of the object in the clipboard and

new
e

objT =
s

cutT in the object table.
Else
 Perform the above action on objID only

If objID = zone then advance the playback periods which are in
back of the zone.

 For all objects in the object table with s
objT > e

cutT ,

 Set
s

objT =
s

objT - (
e

cutT -
s

cutT) and
e

objT =
e

objT - (
e

cutT -
s

cutT)

Figure 10. The algorithm for the cut function

Figure 11. E.g., The <Cut> function

(a) Cut an object

(b) Cut a time zone

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

URI-4

URI-5

5s 15s 0s

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

Cut an
object

Save to the
clipboard

0s

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s

Cut a time
zone

Save to the
clipboard

Figure 12. E.g., The <Paste> function

(a) Paste: an object in the clipboard

(b) Paste: a time zone in the clipboard

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

URI-3

From the
clipboard

0s

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

Paste point
(0s)

URI-4

URI-5

5s 15s 0s

Paste point
(0s)

From the
clipboard

Function Paste (Clipboard, pasteT)
If Clipboard = zone then
 If exist an object with

s
objT < pasteT <

e
objT , reject the request

1. Expand the timeline (from pasteT) by the length of the zone.
Assume the zone is (

s
zoneT , e

zoneT) and it’s length = zoneL
For all objects with

s
objT > pasteT , set

s
objT =

s
objT + zoneL and

e
objT =

e
objT + zoneL

2. Add all objects in the clipboard to the object table, by
setting

s
objT = pasteT +(

s
objT -

s
zoneT), e

objT = pasteT +(
e

objT -
s

zoneT)
Else
 Insert the object in the clipboard to the object table.
 (Visual object must pass the test of spatial-temporal conflict)

Figure 13. The algorithm for the paste function

straightforward conversion makes all media objects
the children of a <par> element, and the <par>
element, by the definition, requires the browser to
deal with all its children concurrently. Hence, more
processing overhead and more buffers are required
for browsing the resulted SMIL file of the
straightforward conversion.

Therefore, from the processing point of view of
the browser, more sequential parts in the resulted
SMIL file make the browsing more efficient.
Unfortunately, it is not easy at all to find as fewer as
possible sets of objects with disjoint playback
periods from the temporal information after the
editing process. Thus, we try to find some clues from
the semantic level.

First of all, since the number of medium used in
a presentation is limited, we could first classify the
objects by their medium type. Objects of each
medium type form a child element of the root <par>
element in the SMIL file. Furthermore, by observing

that the authoring system does not allow the
spatial-temporal conflict for visual objects, it implies
that the visual objects with the same display position
form a set of disjoint playback periods. Therefore, if
we further classify the objects of a visual medium by
their display position, we could determine all the sets
of disjoint objects for that medium. More specifically,
a set of disjoint objects forms a <seq> element for
the same display position, and all the sets of the same
medium type further forms the children of a <par>
element which is one of the children of the root
<par>. We illustrate the idea by the example in
Figure 14.

The classification by the display position does
not work for non-visual objects like audio, so we
developed the Scan2SMIL algorithm to convert the
non-visual objects. The Scan2SMIL does not
consider any semantic relationship among the objects,
but only provide a rule to determine a set of disjoint
objects in each scan (iteration). The first step in

Figure 14. E.g., Convert playback duration to SMIL

Step1: Classify objects by medium type

Tx1

Img1

Tx2

A1

8s 15s 0s

A2

A3

V2

4s 10s 5s

V3

V1

Step2: Classify visual objects by position

Tx1

Img1

Tx2

A1

8s 15s 0s

A2

A3

V2

4s 10s 5s

V3

V1

child1

child2

child3

child4

<par>

(Editing result)

<par>
 <par>
 <V1> (begin=8s, dur=7s)
 <seq>
 <V2> (dur=5s)
 <V3> (begin=3s, dur=7s)
 </seq>
 </par>
 <par>
 <seq>
 <A1> (dur=5s)
 <A3> (begin=3s, dur=7s)
 </seq>
 <A2> (begin=4s, dur=11s)
 </par>
 <par>
 <seq>
 <Tx1>(begin=4s, dur=6s)
 <Tx2>(dur=5s)
 </seq>
 </par>
 <img1> (dur=8s)
</par>

0s

Tx1

Img1

Tx2

A1

8s 15s

A2

A3

V2

4s 10s 5s

V3

V1 pos1

pos2 -> <seq>

pos3 -> <seq>

pos4

<par>

Scan2SMIL
Algorithm

Step3: Converting

Scan2SMIL is sorting the objects by s
objT . Next, the

algorithm selects the object with smallest s
objT as the

first object of a new set of disjoint objects. The
algorithm then searches the nearest disjoint object for
the set of disjoint objects, i.e. the object with the
smallest value of s

objT such that s
objT of the object

>= e
objT of the first object in the set. The nearest

object is added to the set of disjoint objects as the
second object. The scanning process continues to
search the next nearest disjoint object for the second
object, the third object, etc. until all objects are
scanned. The objects in the set obtained from the
iteration obviously form a <seq> element and are
removed from the object table. Similarly, following
iterations create other sets of disjoint objects and
form more <seq> elements. The algorithm stops
when no objects in the object table. All <seq>

elements from all iterations form the children of a
<par> element of the non-visual medium.

The Scan2SMIL algorithm is displayed in Figure
15, and the converting algorithm (Convert2SMIL) for
the temporal information is displayed in Figure 16. In
fact, if the authoring system allows the existence of
the spatial-temporal conflict in the presentation, the
Convert2SMIL algorithm should adopts Scan2SMIL
for objects of each medium type, instead of
considering the semantic level conversion.

6. Conclusion

 The architecture of the authoring system for
SMIL-based presentations is proposed in the paper.
Kernel mechanisms of the authoring process, such as
input, editing, and output, are presented. Useful
timeline-based editing functions such as clear, cut,
copy, and paste are proposed, and the algorithms for
them are also included in the paper. In order to
support the timeline-based editing functions, the
input SMIL file is converted to RTSM and the
playback period of each object is computed. The
editing result is finally saved in the format of SMIL.
An algorithm for converting the timeline-based
editing results to the SMIL format is proposed.

Reference

[1] J. Song, M.Y. Kim, G. Ramalingam, R. Miller,
and B.K. Yi, “Interactive authoring of
multimedia documents,” Proceedings, IEEE
Symposium on Visual Languages , 1996, pp.
276 –283.

[2] M. Jourdan, C. Roisin, and L. Tardif,
“Multiviews interfaces for multimedia authoring
environments,” Proceedings, Multimedia
Modeling, 1998 (MMM '98), pp. 72 –79.

[3] L. Hardman, G. van Rossum and Dick C. A.
Bulterman, “Structured multime dia authoring,”
Proceedings, 1st ACM international conference
on Multimedia, 1993, pp. 283 – 289.

[4] J. Emery and A. Karmouch, “A time-based
multimedia document architecture,” Proceedings,
IEEE ICC 1995, vol.1, pp. 555 –559.

Algorithm Scan2SMIL (for non-visual objects)
1. Create a <par> element for the medium type

The <par> element is a child of the root <par> in the SMIL
file

2. Sorting all objects by s
objT

3. While object exists in the object table do {
 Select the object with smallest

s
objT

 Add the object to a new set S.
 Find the nearest object that is disjoint with all objects in S.
 Add the found object to S and continue to add disjoint objects

to S until all objects are scanned.
 Remove the objects in S from the object table.
 The objects in S compose a <seq> element which is the child

of the <par> element created in step 1.
 }

Figure 15. The Scan2SMIL algorithm

Algorithm Convert2SMIL
1. Create the root <par> element
2. Classify objects by the medium type

Objects of each type compose one child of the root <par>
3. For visual objects

Classify objects by the display position
Objects of each display position form a <seq> element
All <seq> elements of different display positions form a <par>
element.
The <par> element is a child of the root <par>.

4. For non-visual objects
Perform the Scan2SMIL algorithm

Figure 16. The Convert2SMIL algorithm

[5] M. Jourdan, N. Layaïda, C. Roisin, L. S.-Ismaïl
and L. Tardif, “Madeus, an authoring
environment for interactive multimedia
documents,” Proceedings, 6th ACM international
conference on Multimedia, 1998, pp. 267 – 272.

[6] Shi-Kuo Chang, “Perspectives in multimedia
software engineering,” Proceedings, IEEE
International Conference on Multimedia
Computing and Systems, 1999, pp. 74-78.

[7] S. Hudson and C.-N. His , “The walk-through
approach to authoring multimedia documents,”
Proceedings, the second ACM international
conference on Multimedia 1994, pp. 173 – 180.

[8] J. Kelner, D. Hadj Sadok, F. Marques, and A.
Neves, “The role of parametrization in the
multimedia authoring process,” Proceedings,
IEEE Conference on Protocols for Multimedia
Systems - Multimedia Networking, 1997, pp.
142 –149.

[9] D. Del Corso, G. Morrone, E. Ovcin, A. Truzzi,
C. Scrizzi, and M. Gastaldi, “Interactive
educational multimedia: a quick design and
development tool,” Proceedings, IEEE
International Conference on Multimedia
Computing and Systems, 1999, vol. 2, pp.
841 –845.

[10] Synchronized Multimedia Integration Language
(SMIL) 1.0 Spec. W3C Recommendation, June
1998, http://www.w3c.org/TR/REC-smil.

[11] Synchronized Multimedia Integration Language
(SMIL) Boston Specification, W3C Working
Draft 20-August-1999, http://www.w3.org/TR
/smil-boston.

[12] Larry Bouthillier, “Synchronized Multimedia on
the Web- A New W3C Format is All Smiles,”
Web Techniques Magazine, September 1998, Vol.
3 Issue 9.

[13] Philipp Hoschka, “An introduction to the
Synchronized Multimedia Integration

Language,” IEEE Multimedia, Oct.-Dec. 1998,
pp. 84-88.

[14] T. D. C. Little, and A. Ghafoor,
“Synchronization and storage models for
multimedia objects,” IEEE Journal of Selected
Area in Communications, vol. 8, no. 3, pp.
413-427, Apr. 1989.

[15] C. C. Yang and J. H. Huang, “A Multimedia
Synchronization Model and its Implementation
in Transport protocols,” IEEE Journal of
Selected Area in Communications, vol. 14, No. 1,
pp. 212-225, Jan. 1996.

[16] Chun-Chuan Yang, “On the Design of the
Data-Retrieving Engine for Distributed
Multimedia Presentations”, accepted by IEEE
ICC2001, http://www.csie.ncnu.edu.tw/~ccyang/
Publication/ICC2001-1.pdf.

Biographies

Chun-Chuan Yang received his B.S. degree in
computer and information science from National
Chiao-Tung University, Taiwan, in 1990 and Ph.D.
degree in computer science from National Taiwan
University in 1996. Since 1998, he has been an
assistant professor in the department of computer
science and information engineering, National
Chi-Nan University, Taiwan. His research area of
interests includes multimedia network protocols,
multimedia synchronization control, and multimedia
applications.

Yi-Zheng Yang received his B.S. degree in industry
education from National Changhua University of
Education, Taiwan, in 1999. He is currently a master
student in the department of computer science and
information engineering, National Chi Nan
University. His current research topic is the design
and implementation of the multimedia authoring
system for distance learning.

