
 

Abstract—By introduction of Relay Nodes (RNs), LTE-Advanced 

can provide enhanced coverage and capacity at cell edges and hot-spot 

areas. The authors have been researching the issue of power saving in 

mobile communications technology such as WiMax and LTE for some 

years. Based on the idea of Load-Based Power Saving (LBPS), three 

efficient power saving schemes for the user equipment (UE) were 

proposed in the authors’ previous work. In this paper, three revised 

schemes of the previous work in order to integrate RN and UE in 

power saving are proposed. Simulation study shows the proposed 

schemes can achieve significantly better power saving efficiency than 

the standard based scheme at the cost of moderately increased delay. 

Keywords—DRX, LTE-A, Power Saving, RN 

I. INTRODUCTION

S a candidate 4G system, LTE-Advanced (LTE-A) has 

become the fastest developing mobile communication 

technology in recent years. Comparing with its previous 

version of Release 8 [1], LTE-A (Release 10 [2] and up) aims to 

provide higher capacity and speed with some enhanced 

features, including the introduction of the Relay Nodes (RNs). 

RN was first included in Release 10 in order to extend the 

coverage of high data rates and improve the cell-edge 

throughput. With the help of RN, the radio link between eNB

(the base station) and UE (the user equipment) has become two 

hops as displayed in Fig. 1. The link between eNB (also called 

the donor eNB or DeNB) and RN is referred to as the backhaul 

link, while the link between RN and UE is referred to as the 

access link. With respect to the usage of spectrum, RN’s 

operation can be divided into inband and outband types. An RN 

is said to be inband if the backhaul link and the access link are 

on the same carrier frequency, outband if not. RN-related 

research issue includes architecture design [3-5], mobility 

support [6], resource allocation and scheduling [7-8], etc. 

In addition to the improvement of channel capacity and radio 

coverage, energy saving also plays an important role in modern 

mobile communications. Discontinuous Reception Mode
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(DRX) [9] is supported in LTE in order to conserve UE’s 

power. The authors have been researching power saving 

mechanisms for some years. The idea of Load-Based Power 

Saving (LBPS) and associated schemes were proposed for IEEE 

802.16 [10-11]. Extension work of LBPS for UE power saving 

in LTE was also proposed [12]. In this paper, revised LBPS 

schemes integrating RN and UE power saving are proposed. 

The type of RN focused in the paper is Type 1 RN, which 

control its cell with its own identity as if it is a Release 8 eNB. 

Moreover, Type 1 RN provides half duplex with inband 

transmissions. Simulation study has demonstrated that via the 

proposed schemes a good level of power saving at both RN and 

UE can be effectively achieved. 

The remainder of the paper is organized as follows. The 

authors’ previously proposed LBPS schemes are briefly 

surveyed in section II. The revised LBPS schemes integrating 

RN and UE in LTE-A are presented in section III. Performance 

evaluation is presented in section VI. Finally, section V 

concludes this paper. 

II.PREVIOUS WORK

Sleep Scheduling Schemes Integrating Relay 

Node and User Equipment in LTE-A 

Chun-Chuan Yang*, Jeng-Yueng Chen, Yi-Ting Mai, and Hsieh-Hua Liu 
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and capacity of the backhaul link is much better than the access 

link as in the case of fixed RN to simplify the design of the 

LBPS schemes. 

 There are naturally two strategies to integrate RN and UEs 

in sleep scheduling: UE-first and RN-first. In the UE-first 

strategy, power saving for UEs is the first concern and LBPS 

schemes determine the sleep schedule for UEs as in the case 

without RN. With one awake subframe in a sleep cycle for the 

backhaul link, the sleep period of RN is then assigned to the 

common sleeping period of all UEs. On the other hand, a 

predefined threshold for power saving performance of RN is 

given in the RN-first strategy. The threshold places a limit on 

RN’s sleep cycle length, which further affects the sleep pattern 

of all UEs. Therefore, the LBPS schemes need to be revised in 

order to accommodate the new requirement imposed by the 

RN’s threshold. In this paper, we focus on the UE-first strategy, 

and three revised LBPS schemes namely LteA-Aggr,

LteA-Split, and LteA-Merge, are presented in the following 

sections. 

B. LteA-Aggr 

As the simplest version of LBPS, LteA-Aggr treats all UEs as 

a single group in determining the synchronous sleep schedule. 

The length of a sleep cycle in LteA-Aggr is calculated according 

to the total downlink load of all UEs and the current estimation 

of the capacity in a subframe as follows: 

The length of the next sleep cycle K  

= LengthAwkSlpCyl (λ, Data_TH), where λ = the total downlink load 

for all UEs, and Data_TH = the current estimation 

of the capacity for all UEs in a subframe. 

Please refer to the authors’ previous work [12] for detail 

calculation of the function of LengthAwkSlpCyl. The scheme of 

LteA-Aggr is illustrated in Fig. 4, in which the worst case for 

RN power saving (Case B in Fig. 4) is when the calculated 

cycle length K less than or equal to 2, resulting in zero power 

saving for RN and 50% power saving for UEs. Note that the 

definition of power saving efficiency (denoted by PSE) in this 

paper is the ratio of the sleeping period. 

C.LteA-Split 

Starting from a whole group of UEs as in LteA-Aggr,

LteA-Split takes advantage of splitting operation to extend the 

sleep cycle length. The splitting operation is aiming at 

maximizing the cycle length of each split group for better 

power saving efficiency. Fig. 5 is used as an example for 

illustration of the typical LteA-Split protocol. The first iteration 

of the example results in the cycle length of 3 (i.e. KG=3), and a 

splitting operation is then performed in the second iteration. 

The cycle length of the second iteration (i.e. K=4 in the case) is 

the minimum value of K among the three split groups. The 

splitting operation stops when two consecutive iterations 

resulting in the same cycle length as iteration (3) and (4) in Fig. 

5. Iteration (4) is where the original version of LBPS-Split stops. 

In LteA-Split, one subframe for the backhaul link is necessary 

for a feasible sleep schedule, which means the cycle length 

must be larger than the number of split groups at least by one. 

Iteration (4) fails to pass the feasibility check and the result of 

the previous iteration, i.e. 4 groups and cycle length=6 of 

iteration (3), is used for the final sleep schedule, as displayed in 

the lower part of Fig. 5. 

Note that the worst case of LteA-Split in terms of power 

saving is when there is no space for splitting in the very 

beginning, which makes LteA-Split behave the same as 

LteA-Aggr.

D.LteA-Merge 

Starting from each UE forming a single-member group, 

LteA-Merge allows UEs to have different cycle length in sleep 

schedule. As mentioned in section II, the cycle length 

Fig. 4 The Scheme of LteA-Aggr

DeNB 

All UEs

Awake 

K = LengthAwkSlpCyl (λ, Data_TH), where λ = total downlink load, and 

Data_TH = current estimation of the 

capacity for all UEs in a subframe

Awake Sleeps K-2 subframe 

PSERN = (K-2)/K, PSEUE = (K-1)/K 

One Cycle = K subframes 

RN

Case A: K > 2 

Awake Sleep K-2 subframe

DeNB 

All UEs

Awake Awake PSERN = 0, PSEUE = 0.5 

One Cycle = 2 subframes 

RN

Case B: K  2 

Awake

data 

data 

Fig. 5 Example of LteA-Split

DeNB

UE

Awake

λG = Total load of all UEs 

K G = LengthAwkSlpCyl (λG, Data_TH G) = 3

Awake

PSERN = 1/6, PSEUE = 5/6 

One Cycle = 6 subframes 

RN

G1

(1) Initial: One group 

(2) 3 groups 

(3) 4 groups 

(4) 6 groups -> K = 6 

Feasibility check: K - #Group  = 0 < 1 Failure

λG1 = Total load of UEs in G1,  λG2 = Total load of UEs in G2 

λG3 = Total load of UEs in G3  

KG1 = LengthAwkSlpCyl (λG1, Data_TH G1) = 4

KG2 = LengthAwkSlpCyl (λG2, Data_TH G2) = 5

KG3 = LengthAwkSlpCyl (λG3, Data_TH G3) = 5 

K = Min (KG1, KG2, KG3) = 4 

K = Min (4 groups) = 6 

K = Min (6 groups) = 6 

Go back to the 

previous iteration 

K - #Group  1 Success

Final Sleep Schedule: 4 groups,  K = 6 

Awake 

G2

Awake 

G3

Awake 

G4

Tokyo Japan May 28-29,  2015, 17 (5) Part XXIII

3098



calculated by the function of LengthAwkSlpCyl is converted to 

the closest and smaller power of 2 to simplify the check of 

schedulability. The major difference between LteA-Merge and 

its original version of LBPS-Merge is the requirement of one 

subframe for the backhaul link in a sleep cycle, which also 

leads to the change of the equation of schedulability check. In 

the original version of LBPS-Merge, the equation of 

schedulability is defined as follows: 

Schedulability
LBPS-Merge

,

where Ki
# is the converted value of the 

cycle length of group i.

Considering the requirement of the subframe for the 

backhaul link, one more item is added to the equation of 

schedulability in LteA-Merge as follows: 

Schedulability
LteA-Merge

,

where KBkhl is the cycle length for the 

backhaul link. 

The value of KBkhl is set as the maximum cycle length among 

all groups in each iteration. An example of LteA-Merge is given 

in Fig. 6, in which no merging operation is required since the 

value of schedulability (i.e. 13/16) in the first iteration is 

already less than 1. Moreover, it is easy to know from the 

example that RN’s power saving efficiency for a sleep schedule 

equals (1 – schedulability). Therefore, if the schedulability = 1

in the last iteration in LteA-Merge, there would be no space for 

RN power saving (i.e. PSERN = 0). To illustrate the case, Fig. 7 

shows a series of merging operation for another example of 

LteA-Merge in order to find a feasible sleep schedule, resulting 

in zero power saving for RN. Note that the value of KBkhl

changes during the merging process in the example. Also note 

that the two types of merging operation namely the 

non-degraded merge and the degraded merge used in Fig. 7 are 

defined in authors’ previous work of LBPS-Merge [12]. The 

worst case for LteA-Merge in terms of power saving is when all 

UEs are finally merged into a whole group making the same 

result as LteA-Aggr.

It’s worth mentioning that in order to take advantage of 

multi-user diversity in resource allocation in a subframe, the 

constraint of minimum group size could be added in 

LteA-Merge as well as in LteA-Split to set a limitation for the 

merging/splitting process. 

IV. PERFORMANCE EVALUATION

Simulation study is conducted to evaluate the performance of 

the three proposed schemes as well as a standard-based contrast 

scheme. Three types of UEs are defined for simulating different 

cases of channel quality. An H-type (high link quality) UE is 

assumed to use 64QAM modulation with CQI value ranging 

from 10 to 15. An M-type (medium link quality) UE uses 

16QAM with CQI ranging from 7 to 9. An L-type (low link 

quality) UE uses QPSK with CQI ranging from 1 to 6. In 

addition to the proposed schemes, a contrast scheme based on 

standard DRX (denoted by Std. DRX) is also simulated. 

Parameters used in the simulation are summarized in Table 1. 

TABLE I 

SIMULATION PARAMETERS

Channel capacity 20 MHz (#RB = 100) 

#DeNB, #RN, # UE 1, 1, 40 (UE with equal load) 

Type of UE 

H-type:  CQI 11~15 

M-type:  CQI 6~10 

L-type:  CQI 1~5 

Packet Size 799 bits 

DATA_TH Estimated Capacity  0.8 

Prob_TH 0.8 

Minimum Group Size 2 

Contrast scheme  

Std. DRX 

On duration = 1ms 

Inactivity timer = 10ms 

Short DRX Cycle = 80ms 

Short Cycle timer = 2 

Long DRX Cycle = 320ms 

The results of PSE (Power Saving Efficiency) for different 

UE cases are displayed in Fig. 8~10, and the corresponding 

results of the average delay (denoted by AvgDelay) are 

displayed in Fig. 11~13. Note that the result of RN’s PSE for Std. 

DRX is zero in all UE cases, which is not displayed in Fig. 8~10. 

Following observations can be made from these figures. 

(1) LteA-Split and LteA-Merge outperform LteA-Aggr and 

Std. DRX in terms of UE’s PSE as well as RN’s PSE at 

the cost of slightly increased AvgDelay, which 

demonstrates the benefit of grouping UEs (either by 

splitting or merging) in sleep scheduling. 

(2) As displayed in Fig. 8 and Fig. 9, LteA-Split outperforms 

LteA-Merge in most cases in terms of UE’s PSE and 

RN’s PSE, since the conversion of the cycle length (to a 

power of 2) in LteA-Merge results in lower PSE for both 

UE and RN. 

(3) RN’s PSE for Std. DRX is zero even in very light load, 

since for 40 UEs the probability of all UEs entering the 

sleep period at the same time is very close to zero 

making RN never get the chance of power saving in the 

simulation.

(4) As shown in Fig. 10, UE’s PSE of Std. DRX is better 

than the proposed schemes for some input loads in the 

Fig. 6 Example of LteA-Merge: PSERN > 0 
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case of All-L UEs, since the packet arrival rate with fixed 

size (799 bits) is very low triggering the inactivity timer 

of Std. DRX to expire more frequently and achieve 

higher UE’s PSE at the cost of high AvgDelay as shown 

in Fig. 13. 

V. CONCLUSION

In this paper, the authors focus on integrated power saving 

for both RN and UE in LTE-A. The strategy of UE-first for 

integrating RN and UE in sleep scheduling is adopted. Based on 

previously proposed Load-Based Power Saving (LBPS)

schemes, three revised LBPS schemes namely LteA-Aggr,

LteA-Split, and LteA-Merge are proposed. Simulation study 

shows by taking advantage of grouping UEs either by splitting 

or merging in sleep scheduling, LteA-Split and LteA-Merge

outperform LteA-Aggr as well as the standard-based contrast 

scheme in terms of both UE’s and RN’s power saving 

efficiency at the cost of moderate increase in average access 

delay. The future work of the research is to design integrated 

LBPS schemes for RN-first strategy. 
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