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Abstract—  Distributed multimedia presentation enables 
users to view a multimedia presentation in the distributed 
manner, in which the objects of the presentation are located in 
remote sites. User-interaction provi des the viewer with 
convenient viewing styles like fast forward and fast backward 
for a presentation, but it also introduces complexity to the 
data-retrieving engine. A smart data-retrieving engine that 
supports user interactions for the SMIL-based multime dia 
presentation is proposed in the paper. The SMIL script of the 
presentation is first converted to Real -Time Synchronization 
Model (RTSM) in order to provide a systematic view of the 
synchronization relationship. The algorithm for determining 
the proper objects to be retrieved as well as the pre-fetch time 
of the object under user actions is proposed for the 
data-retrieving engine. 

Index Terms—  Distributed Multimedia Presentation, SMIL, 
Synchronization Model, User-Interaction 

I. INTRODUCTION 

With the development of high-speed network and 
computer technologies, multimedia information system like 
distributed multimedia presentation [1-3] is no longer 
unreachable. Distributed multimedia presentation involves 
various multimedia objects with some temporal constraints, 
which is also called synchronization relationship. In order 
to compose a multimedia presentation, a mechanism 
(language) is required for the presentation author. The 
World Wide Web Consortium (W3C) developed the 
Synchronization Multimedia Integration Language (SMIL) 
[4-7] that allows the use of a text editor to write multimedia 
presentations with both spatial relationship and temporal 
relationship. With the efforts of W3C, SMIL is becoming 
the most popular language in authoring multimedia 
presentations. This paper is thus focus on the SMIL-based 
presentations. 

Since objects in a multimedia presentation may reside in 
remote data servers as shown in Fig. 1, the critical problem 
is to guarantee that temporally related objects from 
different data servers and different network channels will 
play synchronously at the client site- even with random 
user interactions [8, 9] such as play, stop, pause/restart, fast 
forward , fast backward  and sliding (by a slider) . The 
quality of the presentation depends on the ability of the 
player in dealing with the network behavior and user 
interactions. When a presentation is ongoing, the 
data-retrieving engine for the player (or the player itself) 
should retrieve proper media objects before the object’s 
playback time according to the synchronization relationship 

of the presentation. Therefore, the data-retrieving engine 
plays an important role on the quality of the presentation.  

Two extreme policies for data retrieving could be 
adopted. First, retrieve all objects before starting the 
presentation, or second, never make the request to retrieve 
the object until the object’s playback time. The first policy 
guarantees the smooth playback and deals with user 
interactions well in the cost of a long initial delay and a 
large buffer for all objects. Moreover, since the viewer 
could activate hyperlinks in an ongoing presentation as in 
SMIL, it is improper to pre -fetch all media objects in 
advance. Minimal buffer is required for the second policy, 
but it introduces gaps between the request time and the 
finish time of object retrieval because of the network delay. 
It implies that the smooth playback is impossible for the 
second policy and the random user interactions make the 
situation worse. 

The proposed data-retrieving engine in the paper adopts 
a better policy that is called the just-in-time policy. The 
policy requires the retrieval process for an object to be 
finished right before the playback time of the object so that 
the player could continue the presentation smoothly. Under 
such policy, the data-retrieving engine only buffers 
necessary objects for the smooth progress of the 
presentation, thus it has a better buffer utilization and 
network bandwidth efficiency. For user interactions, the 
player provides users with VCR-like control functions, and 
passes the user action with corresponding parameters to the 
data-retrieving engine. By analyzing the synchronization 
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relationship of the presentation and the user action, the 
data-retrieving engine determines the proper objects which 
should be played next and retrieve them just in time to meet 
the user action. 

To deal with the synchronization relationship efficiently, 
a synchronization model [8-13], that provides a systematic 
view of the synchronization relationship specified in the 
SMIL script, is necessary for the data-retrieving engine. In 
the literature, DEFSM (Dynamic Extended Finite State 
Machine)  [8] is proposed to model the synchronization 
relationship for interactive multimedia presentations. 
However, the approach requires two models, an “actor” 
DEFSM and a “synchronizer” DEFSM, for an interactive 
presentation, and is hence complicated. A more compact 
and Petri-net based model namely OCPN (Object 
Composition Petri Net) was proposed to model the 
synchronization relationship among media objects [9-10]. 
However, we had shown that OCPN is not suitable for 
real-time network applications, and instead the Real-Time 
Synchronization Model (RTSM)  was proposed [13]. 
Moreover, some synchronization behaviors that could be 
specified in SMIL make RTSM more suitable than OCPN. 
For example, SMIL allows the author to set the explicit 
beginning time, duration, or end time for a media object. 
RTSM could easily model the synchronization behavior 
[14], but OCPN could not. Therefore, RT SM is adopted in 
the proposed data-retrieving engine. We make a brief 
survey for RTSM in the following. 

The elements in RTSM include place, token, and 
transition as in OCPN. However, there are two kinds of 
places in RTSM, regular places and enforced places. A 
different firing rule for enforced places is defined. The rule 
specifies that once an enforced place becomes unblocked 
(in other words, the related action with the place is 
completed), the transition following it will be immediately 
fired regardless the states of other places feeding the same 
transition. An example of RTSM is shown in Fig. 2 in 
which a single circle is for the regular place, a double circle 
is for the enforced place, and a bar is drawn for the 
transition. The RTSM in the figure requires that the audio 
segment audio1, the video clip video1 and the text data 
text1 be played simultaneously. Since audio1 is an enforced 
place, transition T1 is fired right after audio1 is finished, 
regardless of whether video1  or text1 has finished or not. 
After firing T1, image1 is displayed for 5 seconds then 
transition T2 is fired. Finally, audio2 is played for 10 
seconds after T2 fires. Note that the enforced place of “5s” 
in the figure is not a media object but a virtual medium that 
is called Time Medium [13]. The time medium is used to 

represent time duration. 
The remainder of the paper is organized as follows. The 

architecture of the proposed data-retrieving engine is 
explained in section II, in which the interface between the 
player and the data-retrieving engine for user interactions is 
also presented. In section III, a brief introduction for 
converting the SMIL temporal relationship to RTSM is 
presented. In section IV the method of determining the 
playback duration for each object under normal play mode 
is explained. The algorithm determining the pre-fetch time 
of each object for user actions is presented in section V. 
Finally, section VI concludes this paper. 

II. ARCHITECTURE OF THE DATA-RETRIEVING ENGINE 

User-interaction supported data-retrieving engine is 
responsible for retrieving proper media objects and dealing 
with user actions for the presentation. The operation model 
of the proposed data-retrieving engine is shown in Fig. 3. 
The data-retrieving engine first accepts the SMIL script 
from the player, and converts the synchronization 
relationship to RTSM. By analyzing the RTSM model and 
by collecting object related information from data servers, 
the playback duration for each object under normal play 
mode is calculated. The data-retrieving engine then uses the 
obtained playback duration of each object as a base to 
handle the user actions and determines the pre-fetch time 
for objects. Proper objects are retrieved and delivered to the 
player by the data-retrieving engine according to the 
object’s pre-fetch time. 

User actions supported by the proposed data-retrieving 
engine include play, stop, pause/restart, fast forward, fast 
backward, and sliding . To define the user interactions more 
precisely, some parameters are required to be associated 
with the user actions as shown in Fig. 4. For example, in 
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the fast forward mode, three parameters should be also 
passed to the data-retrieving engine: CurrentPoint, 
JumpPeriod, and PlaybackPeriod. CurrentPoint  is used to 
indicate the time point within the overall presentation time 
at which the user action is made. JumpPeriod and 
PlaybackPeriod are used to define how does the player 
achieve the fast forward/backward operation. Since it is 
impossible to speed the presentation of a multimedia 
document physically as in the VCR system, we need a new 
way to define fast forward/backward operation. We define 
JumpPeriod as the period to be skipped in fast 
forward/backward operation and PlaybackPeriod as the 
period to be played. By using these two parameters, we 
could achieve the functionality of fast forward/backward, 
and the play speed of the presentation apparently becomes 
(JumpPeriod + PlaybackPeriod) / PlaybackPeriod. The 
playback patterns for fast forward/backward are shown in 
Fig. 5 in which the only difference between fast forward 
and fast backward is the reverse ongoing directions. As for 
the sliding action, the data-retrieving engine only needs to 
know the next playback point, which is denoted by 
NextPlaybackPoint, so that it could retrieve proper objects.  

When the user action is made, the data-retrieving engine 
tries to locate the objects that should be played next under 
the new mode. However, there are always cases that only 
part of one media object needs to be played, such as a 
sub-segment of an audio object or a sub-clip of a video 
object. So it is assumed that data servers have the ability of 
sub-sampling a continuous object like audio or video, and 
the data-retrieving engine only retrieves necessary part of 
the object instead of retrieving the whole object. In the 
following, we present each step of data-retrieving engine. 

III. CONVERSION OF SMIL TO RTSM 

Converting SMIL to RTSM requires examining the 
synchronization elements in SMIL like <par>, <seq>, and 
media object elements with related attributes. The 
algorithm of the conversion was proposed in the previous 
work [14], so we only illustrate the conversion by the 
sample SMIL script shown in Fig. 6. 

The SMIL script in Fig. 6 requires the player to play the 
audio object URI-1, the video object URI-2 and text object 
URI-3 synchronously since these three objects are 
contained in a <par> element. The value of the “endsync” 
attribute in the <par> element requires <par> to end with 
the end of the audio object URI-1. In other words, once the 
audio object URI-1 finishes playing, the video object URI-2 
and the text object URI-3 must also stop playing at the 
same time. After the <par> element, the player has to 
display the image object URI-4 for 5 seconds, and then play 
the audio object URI-5 for 10 seconds. It is easy to be 
aware that the synchronization relationship of the SMIL 
script is similar to that of the RTSM in Fig. 2. 

The obtained RTSM for the sample SMIL document 
after the converting process is shown in Fig. 7. Note that 
there are some virtual places and virtual enforced places 
(denoted by dashed circle and dashed double circle 
respectively) in the figure. They are used to maintain the 
consistency of the model, since the arc (arrows in the figure) 
could only be the link between a transition and a place. In 
fact, the virtual place is a regular place that maps to the 
time medium with zero duration, and the virtual enforced 
place is an enforced place that maps to time medium with 

Fig. 4. User actions and corresponding parameters.  
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zero duration. The virtual (enforced) places introduce 
dummy parts to the obtained RTSM. We apply three simple 
rules to simplify the model [14], and the simplified RTSM 
for the sample SMIL document are shown in Fig. 8. 

IV.  COMPUTE THE PLAYBACK DURATION 

In order to compute the pre-fetch time for each object, 
the data-retrieving engine first has to know the playback 
duration for each object under normal play mode (i.e. play 
speed = 1). The obtained playback duration is then used as 
a base to compute the pre-fetch time for objects under 
specific user action. The playback time for an object is 
actually the firing time of the starting transition, and the 
end time of the object is the firing time of the ending 
transition of the object in RTSM. To compute the firing 
time for each transition, we have to traverse the RTSM. 
Since there is usually more than one place that feeds to a 
transition, the behavior of a transition depends on the type 
of places that feed into it. If a transition is fed by some 
enforced places, the enforced places will dominate the 
behavior of the transition. In other words, if a transition is 
fed by some enforced places, the other regular places can 
not affect the firing time of the transition at all. Therefore, 
we reduce the RTSM by removing the regular places that 
feed to a transition with enforced places. The reduced 
RTSM for the example in Fig. 8 is shown in Fig. 9. 

The firing time for each transition is then computed by 
traversing the reduced RTSM. There are only two 
possibilities for one transition in the reduced RTSM: (1) 
places that feed to the transition are all enforced places, or 
(2) places that feed to the transition are all regular places. 

For case (1), the firing time of the transition is the minimal 
value of “the firing time of the preceding transition” + “the 
duration of the following place”, which is illustrated in Fig. 
10-(a). The firing time of the transition for case (2) is 
instead the maximum value of its predecessors as illustrated 
in Fig. 10-(b). The duration of each place depends on the 
type of the media object. For an enforced place of time 
medium, the duration of the place is the value of the time 
duration. For static media objects, such as <img> and 
<text>, the duration of the place is zero. For continuous 
media object like <audio> and <video>, the duration of the 
place is the implicit duration of the object that is provided 
by the data server. Since the objects stored in a data server 
are all pre -orchestrated, it is easy for the data server to 
obtain the implicit duration of a continuous object. 

After the traversing process mentioned above, there may 
be some cases of inconsis tency that the firing time of a 
transition is later than the firing time of its following 
transition. The reason is that removing the regular places of 
a transition with some enforced places in the reduction 
stage only affects the firing time of the following 
transitions. However, the enforced firing of a transition 
should also make all the preceding transitions fire 
simultaneously [13]. Thus, the solution to remove the 
inconsistency is to replace the firing time of a transition 
with the firing time of its following transition while the 
firing time of the transition is later than that of its following 
transition. 

Assuming that the intrinsic duration of the audio object 
URI-1 in Fig. 9 is 10 seconds, the firing time of each 
transition for the example is shown in Fig. 11, and the 
playback duration for each object in the example of Fig. 8 
is shown in Fig. 12. 
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V. DETERMINE THE PRE-FETCH TIME 

In this section, the mechanism to determine the proper 
object (or part of an object) to retrieve as well as the 
object’s pre-fetch time is presented. The objects that should 
be retrieved depend on the user action since different user 
actions result in different playback patterns and different 
playback time of objects. The pre-fetch time for an object 
depends on both the object’s  playback time under the user 
action and the network condition. 

As mentioned in section IV, the data server provides the 
intrinsic duration for continuous objects to determine the 
playback duration for each object in the presentation under 
normal play mode. Besides, the data-retrieving engine also 
has to collect other information for each object from the 
data servers to determine the pre-fetch time. When the 
data-retrieving engine accepts the SMIL script, it sends 
probe packets to all the data servers for asking the object 
information, which includes object size, estimated 
bandwidth , and play rate. The data server has to estimate 
the bandwidth for the object to the data-retrieving engine 
by some bandwidth measuring mechanism [15, 16]. The 
play rate, which is only valid for continuous objects, 
indicates the amount of data that is played within unit time 
for a continuous object and is used for locating any part of 
the object. We denote the object size for object URI-i as 
SizeURI-i, the estimated bandwidth as EstBWURI-i, and the 
play rate as PlayRateURI-i.  

In addition to object related information, the 
data-retrieving engine also has to estimate the time for the 
request packet arrived to the data server. We use the round 
trip delay, denoted by RTDelayURI-i as the estimated value 
for the delay of the request packet to the server. Thus, the 
total time to retrieve an object is the summation of the 
delay of the request packet and the transmission time of the 
object from the data server to the client site. That is, the 
retrieving time for object URI-i is estimated as (SizeURI-i / 
EstBWURI-i) + RTDelayURI-i. The data-retrieving engine then 

fills in the object information table, which is shown in Fig. 
13, as a reference for computing the pre-fetch time of each 
object. 

A. Play action 

For each action made by the user, the player passes the 
action and associated parameters to the data-retrieving 
engine as presented in section II. CurrentPoint is the only 
parameter that is passed to the data-retrieving engine, and it 
is a time point within the total presentation time under 
normal play mode to indicate the time when the user action 
is made. Initially, the default action is the play action and 
CurrentPoint is the starting of the presentation (i.e. 0s). 

The playback duration in the object information table is 
used as a reference to identify the objects that should be 
played (retrieved) under the user action. Note that the 
values of the playback time (denoted by PBTimeURI-i) and 
end time (denoted by PBEndURI-i) for an object in the table 
are relative to the starting of the presentation. Therefore, 
objects with playback time later than CurrentPoint should 
be played under the play mode. The new playback time for 
object URI-i is PBTimeURI-i – CurrentPoint, which is 
denoted by NewPBTimeURI-i. In other words, the object 
should be played NewPBTimeURI-i seconds later after the 
user action is made. The pre-fetch time for the object is 
computed as NewPBTimeURI-i – (SizeURI-i / EstBWURI-i + 
RTDelayURI-i). 

Because of the random user actions, there are cases that 
CurrentPoint does not align to the PBTimeURI-i of an object 
but within its playback duration. In such case, the new 
playback time for the object becomes 0s (i.e. the action 
time) and the retrieving pattern depends on the types of the 
object. For static objects like images, since they are not 
temporally divisible, the data-retrieving engine should still 
retrieve the whole object. For continuous objects like audio, 
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only part of the object should be retrieved. The retrieved 
part of the object, which is called sub-object, relates to the 
new playback duration for the object, which is from 
CurrentPoint to PBEndURI-i. The size for the sub-object 
denoted by SubSizeURI-i is computed as (PBEndURI-i – 
CurrentPoint)*PlayRateURI-i. Thus, the retrieving time for 
the sub-part becomes (SubSizeURI-i / EstBWURI-i + 
RTDelayURI-i). Fig. 14 shows an illustration for the case of a 
continuous object. The pre-fetch time for the sub-object is 
then NewPBTimeURI-i –(SubSizeURI-i / EstBWURI-i 
+RTDelayURI-i ). 

B. Pause/Restart 

Once the user makes the pause action, the data-retrieving 
engine stops all the pre-fetching process and waits for the 
next user action. The restart action is assumed to follow the 
pause action to continue the presentation in play mode. 
Therefore, the CurrentPoint parameter associated with the 
restart action indicates the next playback point of the 
presentation. The operation of the data-retrieving engine is 
thus the same as that of the play action. 

C. Fast Forward 

Two parameters, JumpPeriod and Playback Period, 
define the forwarding pattern and CurrentPoint indicates 
the action time as mentioned in section II. In order to 
identify the objects or sub-objects that should be retrieved 
under this action, we have to scan the playback duration in 
the object information table from CurrentPoint  to the end 
of the presentation. The summation of JumpPeriod and 
PlaybackPeriod is used as the cycle time to scan the 
playback duration in the information table. In each iteration, 
the part of the duration of an object, which PlaybackPeriod 
is located, is the sub-object to be retrieved and to be played.  

We use the example in Fig. 15 to illustrate the iterative 
process. The playback duration for each object, which is 
derived from the sample SMIL document, is shown in the 
upper part of the figure. It is assumed that the user made 
the fast forward action at the 6th second in the presentation 
time, and JumpPeriod and PlaybackPeriod are 5 seconds 
and 2 seconds respectively. Therefore, the duration from 
the 6th to the 8th second is  the first part of the presentation 
to be played, the 13th to the 15th second is the next part to 

be played, and then the 20th  to the 22nd second, etc, as 
shown in the figure. The above time periods are then used 
to locate the part of an object to be retrieved, and the 
pre-fetch timetable for the fast forward action is set up as 
shown in Fig. 16. Note that in the pre-fetch table in Fig. 16, 
the sub-object fields for URI-3 (text) and URI-4 (image) are 
invalid since they are static objects.  

The retrieving time for sub-object URI-i  with duration 
PlaybackPeriod is calculated as (PlaybackPeriod* 
PlayRateURI-i) / EstBWURI-i + RTDelayURI-i. The new 
playback time for each sub-object depends on the time of 
iteration in which the object is scanned, and it’s in the form 
of PlaybackPeriod*IterationTime . The per-fetch time is 
then computed as the new playback time minus the 
retrieving time of the sub-object. After setting up the 
pre-fetch timetable, the data-retrieving engine makes 
requests to retrieve objects (or sub-objects) according to the 
pre-fetch time for objects. Note that when a new user action 
is made, the data-retrieving engine updates the pre-fetch 
timetable with the new computed pre-fetch time for each 
object. 

D. Fast Backward 

The operation of the data-retrieving engine for the fast 
backward action is similar to that of the fast forward action, 
and the only difference is that the direction of the scanning 
process is reverse as shown in Fig. 5. Computation of the 
retrieving time and the pre-fetch time is the same as in the 
fast forward action. Note that the data-retrieving engine is 
only responsible for retrieving proper data for the player, so 
the ability of reversing the playback of continuous objects 
depends on the player.  

E. Sliding 

When the user uses the slider to change the playback 
point of the presentation, the player must determine the 
next playback point and passes the value 
(NextPlaybackPoint) to the data-retrieving engine. Thus the 
value of NextPlaybackPoint indicates the time point of the 
presentation to be played. It is assumed that the sliding 
action results in the normal playing mode from the new 
time point, so the operation of the data-retrieving engine is 
the same as that of the play action. 

F. Discussion 

Since the value of the pre-fetch time is relative to the 
action time indicated by CurrentPoint , a negative value of 
the pre-fetch time implies that the object should be 

Fig. 15. E.g. Fast forward operation 
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retrieved before playing the presentation for the action just 
made. The method to deal with such case is to make the 
request to retrieve the object right after the user action is 
made. 

The data-retrieving engine has to re-compute the 
pre-fetch time of objects for each time a new user action is 
made, so the computation time of the algorithm to calculate 
the pre-fetch time is critical for the performance of the 
data-retrieving engine. The scanning process for 
determining the objects to be retrieved and for computing 
the pre-fetch time is only one pass for all objects in the 
presentation, so the algorithm only takes linear computation 
time. 

The performance of the data-retrieving engine also 
depends on the accuracy of the estimated retrieving time. 
Since the network is dynamic, it is impossible to exactly 
estimate the time required to retrieve the object. However, 
if there is some way of booking to reserve the bandwidth in 
advance from the data server to the client, the estimated 
pre-fetch time will be more precise, and the quality of the 
presentation will also be improved. The simulation results 
in the previous work [14] show that the data-retrieving 
engine with the just-in-time policy could achieve better 
performance than the other policies. 

VI. CONCLUSION 

User-interaction provides users with flexible viewing 
styles such as fast forward, fast backward and sliding 
operation for a multimedia presentation, but it also 
introduces more complexity to the data-retrieving process 
for distributed objects. In this paper, a data-retrieving 
engine is proposed for the SMIL-based distributed 
multimedia presentation with user interactions. The 
proposed data-retrieving engine adopts the just-in-time 
policy to efficiently make use of the data buffers and 
network bandwidth. The policy requires the data-retrieving 
engine to finish retrieving the object right before the 
object’s playback time to provide the smooth progress of 
the presentation.  

The data-retrieving engine first converts the SMIL script 
to the RTSM model (Real-Time Synchronization Model) 
for systematic analysis. To deal with random user 
interactions, the mechanism of determining the objects that 
should be retrieved under specific user action is proposed. 
By considering both the user action and the network 
condition, the pre-fetch time for objects could be 
determined, and the calculation of the pre-fetch time is 
presented in the paper. Although the data-retrieving engine 
has to re-compute the pre-fetch time of objects for each 
time a new user action is made, it is explained that the 
computation time of the algorithm is linear, and it could be 
finished within a short time. 
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