
User-Interaction Supported Data-Retrieving Engine for Distributed
Multimedia Presentations

Chun-Chuan Yang
Multimedia and Communications Laboratory

Department of Computer Science and Information Engineering
National Chi-Nan University, Taiwan, R.O.C.

ccyang@csie.ncnu.edu.tw

Abstract— Distributed multimedia presentation enables
users to view a multimedia presentation in the distributed
manner, in which the objects of the presentation are located in
remote sites. User-interaction provi des the viewer with
convenient viewing styles like fast forward and fast backward
for a presentation, but it also introduces complexity to the
data-retrieving engine. A smart data-retrieving engine that
supports user interactions for the SMIL-based multime dia
presentation is proposed in the paper. The SMIL script of the
presentation is first converted to Real -Time Synchronization
Model (RTSM) in order to provide a systematic view of the
synchronization relationship. The algorithm for determining
the proper objects to be retrieved as well as the pre-fetch time
of the object under user actions is proposed for the
data-retrieving engine.

Index Terms— Distributed Multimedia Presentation, SMIL,
Synchronization Model, User-Interaction

I. INTRODUCTION

With the development of high-speed network and
computer technologies, multimedia information system like
distributed multimedia presentation [1-3] is no longer
unreachable. Distributed multimedia presentation involves
various multimedia objects with some temporal constraints,
which is also called synchronization relationship. In order
to compose a multimedia presentation, a mechanism
(language) is required for the presentation author. The
World Wide Web Consortium (W3C) developed the
Synchronization Multimedia Integration Language (SMIL)
[4-7] that allows the use of a text editor to write multimedia
presentations with both spatial relationship and temporal
relationship. With the efforts of W3C, SMIL is becoming
the most popular language in authoring multimedia
presentations. This paper is thus focus on the SMIL-based
presentations.

Since objects in a multimedia presentation may reside in
remote data servers as shown in Fig. 1, the critical problem
is to guarantee that temporally related objects from
different data servers and different network channels will
play synchronously at the client site- even with random
user interactions [8, 9] such as play, stop, pause/restart, fast
forward , fast backward and sliding (by a slider) . The
quality of the presentation depends on the ability of the
player in dealing with the network behavior and user
interactions. When a presentation is ongoing, the
data-retrieving engine for the player (or the player itself)
should retrieve proper media objects before the object’s
playback time according to the synchronization relationship

of the presentation. Therefore, the data-retrieving engine
plays an important role on the quality of the presentation.

Two extreme policies for data retrieving could be
adopted. First, retrieve all objects before starting the
presentation, or second, never make the request to retrieve
the object until the object’s playback time. The first policy
guarantees the smooth playback and deals with user
interactions well in the cost of a long initial delay and a
large buffer for all objects. Moreover, since the viewer
could activate hyperlinks in an ongoing presentation as in
SMIL, it is improper to pre -fetch all media objects in
advance. Minimal buffer is required for the second policy,
but it introduces gaps between the request time and the
finish time of object retrieval because of the network delay.
It implies that the smooth playback is impossible for the
second policy and the random user interactions make the
situation worse.

The proposed data-retrieving engine in the paper adopts
a better policy that is called the just-in-time policy. The
policy requires the retrieval process for an object to be
finished right before the playback time of the object so that
the player could continue the presentation smoothly. Under
such policy, the data-retrieving engine only buffers
necessary objects for the smooth progress of the
presentation, thus it has a better buffer utilization and
network bandwidth efficiency. For user interactions, the
player provides users with VCR-like control functions, and
passes the user action with corresponding parameters to the
data-retrieving engine. By analyzing the synchronization

 Script

Player
Data server

Data server

Data server

Data server

URI-1

URI-2

URI-3
URI-k

Network

…

Fig. 1. Distributed multimedia presentation with user interactions

User actions:
Play, Stop,
Pause/Restart,
Fast Forward
Fast Backward
Sliding

relationship of the presentation and the user action, the
data-retrieving engine determines the proper objects which
should be played next and retrieve them just in time to meet
the user action.

To deal with the synchronization relationship efficiently,
a synchronization model [8-13], that provides a systematic
view of the synchronization relationship specified in the
SMIL script, is necessary for the data-retrieving engine. In
the literature, DEFSM (Dynamic Extended Finite State
Machine) [8] is proposed to model the synchronization
relationship for interactive multimedia presentations.
However, the approach requires two models, an “actor”
DEFSM and a “synchronizer” DEFSM, for an interactive
presentation, and is hence complicated. A more compact
and Petri-net based model namely OCPN (Object
Composition Petri Net) was proposed to model the
synchronization relationship among media objects [9-10].
However, we had shown that OCPN is not suitable for
real-time network applications, and instead the Real-Time
Synchronization Model (RTSM) was proposed [13].
Moreover, some synchronization behaviors that could be
specified in SMIL make RTSM more suitable than OCPN.
For example, SMIL allows the author to set the explicit
beginning time, duration, or end time for a media object.
RTSM could easily model the synchronization behavior
[14], but OCPN could not. Therefore, RT SM is adopted in
the proposed data-retrieving engine. We make a brief
survey for RTSM in the following.

The elements in RTSM include place, token, and
transition as in OCPN. However, there are two kinds of
places in RTSM, regular places and enforced places. A
different firing rule for enforced places is defined. The rule
specifies that once an enforced place becomes unblocked
(in other words, the related action with the place is
completed), the transition following it will be immediately
fired regardless the states of other places feeding the same
transition. An example of RTSM is shown in Fig. 2 in
which a single circle is for the regular place, a double circle
is for the enforced place, and a bar is drawn for the
transition. The RTSM in the figure requires that the audio
segment audio1, the video clip video1 and the text data
text1 be played simultaneously. Since audio1 is an enforced
place, transition T1 is fired right after audio1 is finished,
regardless of whether video1 or text1 has finished or not.
After firing T1, image1 is displayed for 5 seconds then
transition T2 is fired. Finally, audio2 is played for 10
seconds after T2 fires. Note that the enforced place of “5s”
in the figure is not a media object but a virtual medium that
is called Time Medium [13]. The time medium is used to

represent time duration.
The remainder of the paper is organized as follows. The

architecture of the proposed data-retrieving engine is
explained in section II, in which the interface between the
player and the data-retrieving engine for user interactions is
also presented. In section III, a brief introduction for
converting the SMIL temporal relationship to RTSM is
presented. In section IV the method of determining the
playback duration for each object under normal play mode
is explained. The algorithm determining the pre-fetch time
of each object for user actions is presented in section V.
Finally, section VI concludes this paper.

II. ARCHITECTURE OF THE DATA-RETRIEVING ENGINE

User-interaction supported data-retrieving engine is
responsible for retrieving proper media objects and dealing
with user actions for the presentation. The operation model
of the proposed data-retrieving engine is shown in Fig. 3.
The data-retrieving engine first accepts the SMIL script
from the player, and converts the synchronization
relationship to RTSM. By analyzing the RTSM model and
by collecting object related information from data servers,
the playback duration for each object under normal play
mode is calculated. The data-retrieving engine then uses the
obtained playback duration of each object as a base to
handle the user actions and determines the pre-fetch time
for objects. Proper objects are retrieved and delivered to the
player by the data-retrieving engine according to the
object’s pre-fetch time.

User actions supported by the proposed data-retrieving
engine include play, stop, pause/restart, fast forward, fast
backward, and sliding . To define the user interactions more
precisely, some parameters are required to be associated
with the user actions as shown in Fig. 4. For example, in

audio1

text1

video1

image1

5s

audio2

10s

Fig. 2. An example of RTSM

T 1 T 2
player

User

SMIL

RTSM Playback duration
for each object

Data server
object information

Pre-fetch time for
each object

user
action

Retrieve objects by pre-fetch time

Data-Retrieving
Engine

Fig. 3. Overview of the user-interaction supported
data-retrieving engine

buffers

data

Network

the fast forward mode, three parameters should be also
passed to the data-retrieving engine: CurrentPoint,
JumpPeriod, and PlaybackPeriod. CurrentPoint is used to
indicate the time point within the overall presentation time
at which the user action is made. JumpPeriod and
PlaybackPeriod are used to define how does the player
achieve the fast forward/backward operation. Since it is
impossible to speed the presentation of a multimedia
document physically as in the VCR system, we need a new
way to define fast forward/backward operation. We define
JumpPeriod as the period to be skipped in fast
forward/backward operation and PlaybackPeriod as the
period to be played. By using these two parameters, we
could achieve the functionality of fast forward/backward,
and the play speed of the presentation apparently becomes
(JumpPeriod + PlaybackPeriod) / PlaybackPeriod. The
playback patterns for fast forward/backward are shown in
Fig. 5 in which the only difference between fast forward
and fast backward is the reverse ongoing directions. As for
the sliding action, the data-retrieving engine only needs to
know the next playback point, which is denoted by
NextPlaybackPoint, so that it could retrieve proper objects.

When the user action is made, the data-retrieving engine
tries to locate the objects that should be played next under
the new mode. However, there are always cases that only
part of one media object needs to be played, such as a
sub-segment of an audio object or a sub-clip of a video
object. So it is assumed that data servers have the ability of
sub-sampling a continuous object like audio or video, and
the data-retrieving engine only retrieves necessary part of
the object instead of retrieving the whole object. In the
following, we present each step of data-retrieving engine.

III. CONVERSION OF SMIL TO RTSM

Converting SMIL to RTSM requires examining the
synchronization elements in SMIL like <par>, <seq>, and
media object elements with related attributes. The
algorithm of the conversion was proposed in the previous
work [14], so we only illustrate the conversion by the
sample SMIL script shown in Fig. 6.

The SMIL script in Fig. 6 requires the player to play the
audio object URI-1, the video object URI-2 and text object
URI-3 synchronously since these three objects are
contained in a <par> element. The value of the “endsync”
attribute in the <par> element requires <par> to end with
the end of the audio object URI-1. In other words, once the
audio object URI-1 finishes playing, the video object URI-2
and the text object URI-3 must also stop playing at the
same time. After the <par> element, the player has to
display the image object URI-4 for 5 seconds, and then play
the audio object URI-5 for 10 seconds. It is easy to be
aware that the synchronization relationship of the SMIL
script is similar to that of the RTSM in Fig. 2.

The obtained RTSM for the sample SMIL document
after the converting process is shown in Fig. 7. Note that
there are some virtual places and virtual enforced places
(denoted by dashed circle and dashed double circle
respectively) in the figure. They are used to maintain the
consistency of the model, since the arc (arrows in the figure)
could only be the link between a transition and a place. In
fact, the virtual place is a regular place that maps to the
time medium with zero duration, and the virtual enforced
place is an enforced place that maps to time medium with

Fig. 4. User actions and corresponding parameters.

Fast forward:
<CurrentPoint, JumpPeriod, PlaybackPeriod>

Fast backward:
<CurrentPoint, JumpPeriod, PlaybackPeriod>

Sliding: <NextPlaybackPoint>

Play, Stop, Pause/Restart: <CurrentPoint>

user action made

playback period jump period

Fast forward Fast backward

jump period

Fig. 5. Playback patterns for Fast forward/backward and Sliding operations.

N% 1 - N%

N% in total playback time Sliding

next playback point

<seq>
<par endsync = id(URI-1)>

 <audio src=URI-1 />
 <video src=URI-2 />
 <text src=URI-3 />

</par>

<audio src=URI-5, dur= “10s” />

</seq>

Fig. 6. Sample SMIL Document

zero duration. The virtual (enforced) places introduce
dummy parts to the obtained RTSM. We apply three simple
rules to simplify the model [14], and the simplified RTSM
for the sample SMIL document are shown in Fig. 8.

IV. COMPUTE THE PLAYBACK DURATION

In order to compute the pre-fetch time for each object,
the data-retrieving engine first has to know the playback
duration for each object under normal play mode (i.e. play
speed = 1). The obtained playback duration is then used as
a base to compute the pre-fetch time for objects under
specific user action. The playback time for an object is
actually the firing time of the starting transition, and the
end time of the object is the firing time of the ending
transition of the object in RTSM. To compute the firing
time for each transition, we have to traverse the RTSM.
Since there is usually more than one place that feeds to a
transition, the behavior of a transition depends on the type
of places that feed into it. If a transition is fed by some
enforced places, the enforced places will dominate the
behavior of the transition. In other words, if a transition is
fed by some enforced places, the other regular places can
not affect the firing time of the transition at all. Therefore,
we reduce the RTSM by removing the regular places that
feed to a transition with enforced places. The reduced
RTSM for the example in Fig. 8 is shown in Fig. 9.

The firing time for each transition is then computed by
traversing the reduced RTSM. There are only two
possibilities for one transition in the reduced RTSM: (1)
places that feed to the transition are all enforced places, or
(2) places that feed to the transition are all regular places.

For case (1), the firing time of the transition is the minimal
value of “the firing time of the preceding transition” + “the
duration of the following place”, which is illustrated in Fig.
10-(a). The firing time of the transition for case (2) is
instead the maximum value of its predecessors as illustrated
in Fig. 10-(b). The duration of each place depends on the
type of the media object. For an enforced place of time
medium, the duration of the place is the value of the time
duration. For static media objects, such as and
<text>, the duration of the place is zero. For continuous
media object like <audio> and <video>, the duration of the
place is the implicit duration of the object that is provided
by the data server. Since the objects stored in a data server
are all pre -orchestrated, it is easy for the data server to
obtain the implicit duration of a continuous object.

After the traversing process mentioned above, there may
be some cases of inconsis tency that the firing time of a
transition is later than the firing time of its following
transition. The reason is that removing the regular places of
a transition with some enforced places in the reduction
stage only affects the firing time of the following
transitions. However, the enforced firing of a transition
should also make all the preceding transitions fire
simultaneously [13]. Thus, the solution to remove the
inconsistency is to replace the firing time of a transition
with the firing time of its following transition while the
firing time of the transition is later than that of its following
transition.

Assuming that the intrinsic duration of the audio object
URI-1 in Fig. 9 is 10 seconds, the firing time of each
transition for the example is shown in Fig. 11, and the
playback duration for each object in the example of Fig. 8
is shown in Fig. 12.

URI-1

URI-2

Fig. 7. RTSM for the sample SMIL document

0s 0s

initial
place URI-3 URI-4

5s

URI-5

10s

T 1

T 2

T 3

T 4

<par> <audio>

<text>

URI-1

URI-2

Fig. 8. Simplified RTSM for the sample SMIL document

0s

initial place

URI-3

URI-4

5s

URI-5

10s

Fig. 9. Reduced RTSM for the sample SMIL document

URI-1

URI-2

0s

Initial
place

URI-3

URI-4

5s

URI-5

10s

Fig. 10. Determine the active time for transition T x

…

T 1

T 2

T n

T x

(a) T x = Min(T 1+D1, … , T n+Dn)

D1

D2

DN

…

T 1

T 2

T n

T x

(b) T x = Max(T 1+D1, … , Tn+Dn)

D1

D2

DN

…

…

…

…

…

…

V. DETERMINE THE PRE-FETCH TIME

In this section, the mechanism to determine the proper
object (or part of an object) to retrieve as well as the
object’s pre-fetch time is presented. The objects that should
be retrieved depend on the user action since different user
actions result in different playback patterns and different
playback time of objects. The pre-fetch time for an object
depends on both the object’s playback time under the user
action and the network condition.

As mentioned in section IV, the data server provides the
intrinsic duration for continuous objects to determine the
playback duration for each object in the presentation under
normal play mode. Besides, the data-retrieving engine also
has to collect other information for each object from the
data servers to determine the pre-fetch time. When the
data-retrieving engine accepts the SMIL script, it sends
probe packets to all the data servers for asking the object
information, which includes object size, estimated
bandwidth , and play rate. The data server has to estimate
the bandwidth for the object to the data-retrieving engine
by some bandwidth measuring mechanism [15, 16]. The
play rate, which is only valid for continuous objects,
indicates the amount of data that is played within unit time
for a continuous object and is used for locating any part of
the object. We denote the object size for object URI-i as
SizeURI-i, the estimated bandwidth as EstBWURI-i, and the
play rate as PlayRateURI-i.

In addition to object related information, the
data-retrieving engine also has to estimate the time for the
request packet arrived to the data server. We use the round
trip delay, denoted by RTDelayURI-i as the estimated value
for the delay of the request packet to the server. Thus, the
total time to retrieve an object is the summation of the
delay of the request packet and the transmission time of the
object from the data server to the client site. That is, the
retrieving time for object URI-i is estimated as (SizeURI-i /
EstBWURI-i) + RTDelayURI-i. The data-retrieving engine then

fills in the object information table, which is shown in Fig.
13, as a reference for computing the pre-fetch time of each
object.

A. Play action

For each action made by the user, the player passes the
action and associated parameters to the data-retrieving
engine as presented in section II. CurrentPoint is the only
parameter that is passed to the data-retrieving engine, and it
is a time point within the total presentation time under
normal play mode to indicate the time when the user action
is made. Initially, the default action is the play action and
CurrentPoint is the starting of the presentation (i.e. 0s).

The playback duration in the object information table is
used as a reference to identify the objects that should be
played (retrieved) under the user action. Note that the
values of the playback time (denoted by PBTimeURI-i) and
end time (denoted by PBEndURI-i) for an object in the table
are relative to the starting of the presentation. Therefore,
objects with playback time later than CurrentPoint should
be played under the play mode. The new playback time for
object URI-i is PBTimeURI-i – CurrentPoint, which is
denoted by NewPBTimeURI-i. In other words, the object
should be played NewPBTimeURI-i seconds later after the
user action is made. The pre-fetch time for the object is
computed as NewPBTimeURI-i – (SizeURI-i / EstBWURI-i +
RTDelayURI-i).

Because of the random user actions, there are cases that
CurrentPoint does not align to the PBTimeURI-i of an object
but within its playback duration. In such case, the new
playback time for the object becomes 0s (i.e. the action
time) and the retrieving pattern depends on the types of the
object. For static objects like images, since they are not
temporally divisible, the data-retrieving engine should still
retrieve the whole object. For continuous objects like audio,

0s

0s

0s

0s

10s 10s
15s 25s

Fig. 11. The firing time for each transition for the example

URI-1

URI-2

0s

initial
place

URI-3

URI-4

5s

URI-5

10s

Fig 12. Object playback duration for the sample
SMIL document

URI-3

URI-2

URI-1

URI-4
URI-5

10s 15s 25s 0s

Time

Obj ID playback time end time size EstBW play rate measured RTT

URI-1 5 sec 10 sec 40KB 10KBps 8KBps 0.1 sec

URI-2 … … … … … …

…

Fig. 13. Object information table for the sample SMIL document

EstBW: estimated bandwidth for the object from the server to the client

play rate: provided by the server, only valid for continuous objects

By RTSM By Data Server

PBTimeURI-i PBEndURI-i

CurrentPoint

sub-object

SubSizeURI-i =

(PBEndURI-i – CurrentPoint)*PlayRateURI-i

Fig. 14. Illustration for locating a sub-object.

only part of the object should be retrieved. The retrieved
part of the object, which is called sub-object, relates to the
new playback duration for the object, which is from
CurrentPoint to PBEndURI-i. The size for the sub-object
denoted by SubSizeURI-i is computed as (PBEndURI-i –
CurrentPoint)*PlayRateURI-i. Thus, the retrieving time for
the sub-part becomes (SubSizeURI-i / EstBWURI-i +
RTDelayURI-i). Fig. 14 shows an illustration for the case of a
continuous object. The pre-fetch time for the sub-object is
then NewPBTimeURI-i –(SubSizeURI-i / EstBWURI-i
+RTDelayURI-i).

B. Pause/Restart

Once the user makes the pause action, the data-retrieving
engine stops all the pre-fetching process and waits for the
next user action. The restart action is assumed to follow the
pause action to continue the presentation in play mode.
Therefore, the CurrentPoint parameter associated with the
restart action indicates the next playback point of the
presentation. The operation of the data-retrieving engine is
thus the same as that of the play action.

C. Fast Forward

Two parameters, JumpPeriod and Playback Period,
define the forwarding pattern and CurrentPoint indicates
the action time as mentioned in section II. In order to
identify the objects or sub-objects that should be retrieved
under this action, we have to scan the playback duration in
the object information table from CurrentPoint to the end
of the presentation. The summation of JumpPeriod and
PlaybackPeriod is used as the cycle time to scan the
playback duration in the information table. In each iteration,
the part of the duration of an object, which PlaybackPeriod
is located, is the sub-object to be retrieved and to be played.

We use the example in Fig. 15 to illustrate the iterative
process. The playback duration for each object, which is
derived from the sample SMIL document, is shown in the
upper part of the figure. It is assumed that the user made
the fast forward action at the 6th second in the presentation
time, and JumpPeriod and PlaybackPeriod are 5 seconds
and 2 seconds respectively. Therefore, the duration from
the 6th to the 8th second is the first part of the presentation
to be played, the 13th to the 15th second is the next part to

be played, and then the 20th to the 22nd second, etc, as
shown in the figure. The above time periods are then used
to locate the part of an object to be retrieved, and the
pre-fetch timetable for the fast forward action is set up as
shown in Fig. 16. Note that in the pre-fetch table in Fig. 16,
the sub-object fields for URI-3 (text) and URI-4 (image) are
invalid since they are static objects.

The retrieving time for sub-object URI-i with duration
PlaybackPeriod is calculated as (PlaybackPeriod*
PlayRateURI-i) / EstBWURI-i + RTDelayURI-i. The new
playback time for each sub-object depends on the time of
iteration in which the object is scanned, and it’s in the form
of PlaybackPeriod*IterationTime . The per-fetch time is
then computed as the new playback time minus the
retrieving time of the sub-object. After setting up the
pre-fetch timetable, the data-retrieving engine makes
requests to retrieve objects (or sub-objects) according to the
pre-fetch time for objects. Note that when a new user action
is made, the data-retrieving engine updates the pre-fetch
timetable with the new computed pre-fetch time for each
object.

D. Fast Backward

The operation of the data-retrieving engine for the fast
backward action is similar to that of the fast forward action,
and the only difference is that the direction of the scanning
process is reverse as shown in Fig. 5. Computation of the
retrieving time and the pre-fetch time is the same as in the
fast forward action. Note that the data-retrieving engine is
only responsible for retrieving proper data for the player, so
the ability of reversing the playback of continuous objects
depends on the player.

E. Sliding

When the user uses the slider to change the playback
point of the presentation, the player must determine the
next playback point and passes the value
(NextPlaybackPoint) to the data-retrieving engine. Thus the
value of NextPlaybackPoint indicates the time point of the
presentation to be played. It is assumed that the sliding
action results in the normal playing mode from the new
time point, so the operation of the data-retrieving engine is
the same as that of the play action.

F. Discussion

Since the value of the pre-fetch time is relative to the
action time indicated by CurrentPoint , a negative value of
the pre-fetch time implies that the object should be

Fig. 15. E.g. Fast forward operation

URI-3

URI-2

URI-1

URI-4

URI-5

10s 15s 25s 0s

Time (play mode)

6s

FF: <CurrentPoint=6s,
 JumpPeriod=5s,
 PlaybackPeriod=2s

13s 15s 20s 22s

FF Speed = (5+2)/2 = 3.5

Time (FF mode)

Time (play mode)

CurrentPoint

8s

Obj ID sub-object NewPBTime end time pre-fetch time

URI-1 6s ~ 8s 0s 2s NewPBTime – retrieval time

URI-2 6s ~ 8s 0s 2s NewPBTime – retrieval time

URI-3 N/A 0s 2s NewPBTime – retrieval time

URI-4 N/A 2s 2s NewPBTime – retrieval time

URI-5 5s ~ 7s 2s + 2s 2s NewPBTime – retrieval time

Fig. 16. Pre-fetch timetable

Time base: when the user action is made (e.g. 6s in Figure 14), i.e. CurrentPoint

User action: fast forward with JumpPeriod=5s and PlaybackPeriod=2s

relative value to the time base

retrieved before playing the presentation for the action just
made. The method to deal with such case is to make the
request to retrieve the object right after the user action is
made.

The data-retrieving engine has to re-compute the
pre-fetch time of objects for each time a new user action is
made, so the computation time of the algorithm to calculate
the pre-fetch time is critical for the performance of the
data-retrieving engine. The scanning process for
determining the objects to be retrieved and for computing
the pre-fetch time is only one pass for all objects in the
presentation, so the algorithm only takes linear computation
time.

The performance of the data-retrieving engine also
depends on the accuracy of the estimated retrieving time.
Since the network is dynamic, it is impossible to exactly
estimate the time required to retrieve the object. However,
if there is some way of booking to reserve the bandwidth in
advance from the data server to the client, the estimated
pre-fetch time will be more precise, and the quality of the
presentation will also be improved. The simulation results
in the previous work [14] show that the data-retrieving
engine with the just-in-time policy could achieve better
performance than the other policies.

VI. CONCLUSION

User-interaction provides users with flexible viewing
styles such as fast forward, fast backward and sliding
operation for a multimedia presentation, but it also
introduces more complexity to the data-retrieving process
for distributed objects. In this paper, a data-retrieving
engine is proposed for the SMIL-based distributed
multimedia presentation with user interactions. The
proposed data-retrieving engine adopts the just-in-time
policy to efficiently make use of the data buffers and
network bandwidth. The policy requires the data-retrieving
engine to finish retrieving the object right before the
object’s playback time to provide the smooth progress of
the presentation.

The data-retrieving engine first converts the SMIL script
to the RTSM model (Real-Time Synchronization Model)
for systematic analysis. To deal with random user
interactions, the mechanism of determining the objects that
should be retrieved under specific user action is proposed.
By considering both the user action and the network
condition, the pre-fetch time for objects could be
determined, and the calculation of the pre-fetch time is
presented in the paper. Although the data-retrieving engine
has to re-compute the pre-fetch time of objects for each
time a new user action is made, it is explained that the
computation time of the algorithm is linear, and it could be
finished within a short time.

REFERENCES

[1] B. Prabhakaran and S. V. Raghavan,
“Synchronization models for multimedia presentation
with user participation,” Proc. ACM Multimedia
1993, pp.157-166.

[2] M. Mielke and A. Zhang, “Optimally Ensured

Interactive Service in Distributed Multimedia
Presentation Systems,” Proceedings, IEEE
International Conference on Multimedia Computing
and Systems, 1999, pp. 661–666.

[3] Y. Song, M. Mielke, and A. Zhang, “NetMedia:
Synchronized Streaming of Multimedia Presentations
in Distributed Environments,” Proceedings of IEEE
International Conference on Multimedia Computing
and Systems, 1999, pp. 585-590.

[4] Synchronized Multimedia Integration Language
(SMIL) 1.0 Specification, W3C Recommendation,
June 1998, http://www.w3c.org/TR/REC-smil.

[5] Synchronized Multimedia Integration Language
(SMIL) Boston Specification, W3C Working Draft
20-August-1999, http://www.w3.org/TR/smil-boston.

[6] Larry Bouthillier, “Synchronized Multimedia on the
Web- A New W3C Format is All Smiles,” Web
Techniques Magazine, September 1998, Vol. 3 Issue
9.

[7] Philipp Hoschka, “An introduction to the
Synchronized Multimedia Integration Language,”
IEEE Multimedia, Oct.-Dec. 1998, pp. 84-88.

[8] Chung-Ming Huang and Chian Wang,
“Synchronization for interactive mu ltimedia
presentations,” IEEE Multimedia, Oct.-Dec. 1998, pp.
44–62.

[9] K. Yoon and P. B. Berra, “TOCPN: interactive
temporal model for interactive multimedia
documents,” Proceedings of International Workshop
on Multi-Media Database Management Systems,
1998 pp. 136-144.

[10] T. D. C. Little, and A. Ghafoor, “Synchronization and
storage models for multimedia objects,” IEEE
Journal of Selected Area in Communications, vol. 8,
no. 3, pp. 413-427, Apr. 1989.

[11] N. U. Qazi, M. Woo, and A. Ghafoor, “A
Synchronization and Communication Model for
Distributed Multimedia Objects,” Proc. ACM
Multimedia 93, pp. 147-155.

[12] InHo Lin, Chwan-Chia Wu, and Bih-Hwang Lee, “A
synchronization model for multimedia presentation
with critical overlap avoidance,” Proceedings of
International Workshop on Multimedia Software
Engineering, 1998, pp. 36-43.

[13] C. C. Yang and J. H. Huang, “A Multimedia
Synchronization Model and its Implementation in
Transport protocols,” IEEE Journal of Selected Area
in Communications, vol. 14, No. 1, pp. 212-225, Jan.
1996.

[14] C. C. Yang, “On the Design of the Data-Retrieving
Engine for Distributed Multimedia Presentations,”
accepted by ICC 2001.

[15] J. Bolliger and Th. Gross, “Bandwidth Modelling for
Network-Aware Applications,” Proceedings., IEEE
INFOCOM’99, pp. 1300-1309, 1999.

[16] K. Lai and M. Baker, “Measuring Bandwidth,”
Proceedings., IEEE INFOCOM’99, pp. 235-245,
1999.

