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Abstract—  To provide the smooth progress of a SMIL-based 
distributed multimedia presentation, the data-retrieving engine 
for the player must pre-fetch each object before its playback 
time. In this paper, a smart data-retrieving engine is proposed, 
which adopts a retrieval policy named the just-in-time policy. 
The policy requires the retrieval process of an object to be 
finished right before the playback time of the object. By 
converting the synchronization relationship of objects in the 
SMIL document to the Real-Time Synchronization Model, 
which simplifies the handling of the synchronization relationship, 
and considering the network condition, the data-retrieving 
engine could determine the request time for each object. The 
engine then makes the request to fetch each object for the 
ongoing presentation according to the pre-computed request 
time, and provides the player with proper media objects for 
smooth playback of the presentation. 

Index Terms—  Distributed multimedia presentation, SMIL, 
Real-time synchronization model (RTSM) 

I.  INTRODUCTION 

Distributed multimedia presentation [1-3] is concerning 
with viewing a presentation via the network as shown in Fig. 
1. Some or all the media objects in the presentation could be 
somewhere else in the network instead of the site where the 
viewer is. There are two major issues to be addressed in the 
distributed multimedia presentation. First, it requires a script 
language to describe both the spatial relationship  and the 
temporal relationship  among distributed media objects in the 
presentation. The spatial relationship is about the visual 
layout of media objects in the presentation, while the 
temporal relationship which is also called synchronization 
relationship [4-6] is concerning with the timing control of 
media objects. The World Wide Web Consortium (W3C) 
developed the Synchronization Multimedia Integration 
Language (SMIL)  [7-10] that allows the use of a text editor to 
write multimedia presentations. With the efforts of W3C, 
SMIL will become the most popular language in authoring 
multimedia presentations. This paper is thus focus on the 
SMIL-based presentations. 

Second, since the media objects in the presentation are 
distributed over the network, the browser or the playback 
application (player) for the presentation must deal with the 
random behavior of the network and provide a smooth 
playback to the viewer. The quality of the playback depends 
on the data-retrieving engine, which should retrieve the 
proper media object before the object’s playback time 
according to the synchronization relationship of the 
presentation. Two extreme policies for data retrieving could 
be adopted. First, retrieve all objects before starting the 
presentation, or second, do not make the request to retrieve 

the object until the object’s playback time. The first policy is 
called the pre-loading policy, and the second policy is called 
the passive-loading policy  in the paper. The pre-loading 
policy guarantees the smooth playback in the cost of a long 
initial delay and a large buffer for all objects. Moreover, since 
the viewer could activate hyperlinks in an ongoing 
presentation as in SMIL, it is improper to pre-fetch all media 
objects in advance. Minimal buffer is required for the second 
policy, but it introduces gaps between the request time and 
the finish time of object retrieval because of the network 
delay. It implies that the smooth playback is impossible for 
the passive-loading policy.  

The proposed data-retrieving engine adopts a better policy 
that is called the just-in-time policy. The policy requires the 
retrieval process for an object to be finished right before the 
playback time of the object so that the player could continue 
the presentation smoothly. Under such policy, the 
data-retrieving engine only buffers necessary objects for the 
smooth progress of the presentation, thus it has a better buffer 
utilization and network bandwidth efficiency.  

In order to estimate the request time for an object under the 
just-in-time policy, the data-retrieving engine has to extract 
the synchronization relationship from the SMIL document to 
determine the playback time for each object in the 
presentation. By considering both the playback time of each 
object and the transmission delay of the network, the request 
time for each object could be determined. The data-retrieving 
engine then makes the request to the data server for an object 
according to the pre-computed request time for that object.  

To deal with the synchronization relationship efficiently, a 
synchronization model [4, 11, 12], which provides a 
systematic view of the synchronization relationship specified 
in the SMIL script, is necessary for the data-retrieving engine. 
A Petri-net based model namely OCPN (Object Composition 
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Petri Net) was proposed to model the synchronization 
relationship among media objects [11]. However, we had 
shown that OCPN is not suitable for real-time network 
applications, and instead the Real-Time Synchronization 
Model (RTSM)  was proposed [13]. Moreover, some 
synchronization behaviors that could be specified in SMIL 
make RTSM more suitable than OCPN. For example, SMIL 
allows the author to set the explicit beginning time, duration, 
or end time for a media object. RTSM could easily model the 
synchronization behaviors as will be explained in section III, 
but OCPN could not. Therefore, RTSM is adopted in the 
proposed data-retrieving engine. Before going through the 
details of the data-retrieving engine, we make a brief survey 
of RTSM in the following. 

The elements in RTSM include place, token, and transition 
as in OCPN. However, there are two kinds of places in 
RTSM, regular places and enforced places. A different firing 
rule for enforced places is defined. The rule specifies that 
once an enforced place becomes unblocked (in other words, 
the related action with the place is completed), the transition 
following it will be immediately fired regardless the states of 
other places feeding the same transition. An example of 
RTSM is shown in Fig. 2 in which a single circle is for the 
regular place, a double circle is for the enforced place, and a 
bar is drawn for the transition. The RTSM in the figure 
requires that audio segment audio1 and two video clips 
video1 and video2 be played simultaneously, in which video2 
follows video1. Since audio1 is an enforced place, transition 
T3 is fired right after audio1 is finished, regardless of 
whether video2 has finished or not. After firing T3, image1 is 
displayed for 5 seconds then transition T4 is fired. Note that 
the enforced place of “Time = 5s” in the figure is not a media 
object but a virtual medium that is called Time Medium [13]. 
The time medium is used to represent time duration. For 
more details of RTSM, please reference paper [13]. 

The remainder of the paper is organized as follows. The 
architecture of the proposed data-retrieving engine is 
explained in section II. Section III presents the algorithm of 
converting the SMIL temporal relationship to RTSM. In 
section IV, the method of determining the playback time and 
the estimated request time for each object is explained. 
Finally, section V concludes the paper.  

II. ARCHITECTURE OF THE DATA-RETRIEVING ENGINE 

The functional architecture of the proposed data-retrieving 
engine is shown in Fig. 3. The engine accepts the SMIL script 
from the player, and provides necessary media object data to 
the player for maintaining the smooth progress of the 
ongoing presentation. There are mainly four steps for the 
data-retrieving engine. First, the synchronization relationship 
is extracted from the SMIL script and is represented by 

RTSM. Second, the playback time for each object must be 
computed, and third, the request time for each object is 
determined. Lastly, each object is requested according to the 
computed request time for the object. The conversion of 
SMIL to RTSM and the method that determining the request 
time are presented in the following sections. 

III. CONVERTING SMIL TO RTSM 

In this section, the synchronization elements in SMIL are 
examined, and the algorithm that converts the elements to 
RTSM is presented. There are three kinds of synchronization 
elements in SMIL to be converted: the <seq> element, the 
<par> element, and the class of media object elements such 
as <img>, <video>, <audio> and <text>, etc [7]. Besides, 
some synchronization related attributes such as “begin”, 
“dur”, and “end” could be associated with these 
synchronization elements. We assume that the player has 
checked the syntax of the SMIL document, so the 
data-retrieving engine only performs necessary conversion. 

A. Converting the <seq> element 

The <seq> element defines a sequence of elements in 
which elements play one after the other. The children 
elements of the <seq> element could be any of the 
synchronization elements such as <seq>, <par>, or the media 
object elements, so the conversion is a recursive procedure. 
Since the children of a <seq> element form a temporal 
sequence, we concatenate each child of <seq> one by one in 
RTSM as illustrated in Fig. 4. Note that there are virtual 
places (denoted by the dashed circle) in the figure. They are  
used to maintain the consistency of RTSM, since the arc 
could only be the link between a transition and a place. In 
fact, the virtual place is a regular place that maps to the time 
medium with zero duration. 

B. Converting the <par> element 

The <par> element defines a simple parallel time grouping 
in which multiple elements can play back at the same time. 
Thus, all children of <par> should be within the same pair of 
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transition (Ts,  Te) as illustrated in Fig. 5. There are three 
variations for <par> since a special attribute, “endsync”, 
could be associated with <par>. The “endsync” attribute 
controls the end of the <par> element, as a function of 
children. Legal values for the attribute are “last”, “first”, and 
“id-ref”. 

The value of “last” requires <par> to end with the last end 
of all the child elements, and the corresponding RTSM is 
shown in Fig. 5-(a), in which transition Te could not be fired 
unless all the children end. The value of “first” requires 
<par> to end with the earliest end of all the child elements. 
Therefore, we should change the places between each child 
element and transition Te to virtual enforced places as 
illustrated in Fig. 5-(b) so that the child that ends first will 
fire transition Te. A virtual enforced place is an enforced 
place that maps to the time medium with zero duration. The 
value of “id-ref” requires <par> to end with the specified 
child. So we change the place between the specified child and 
transition Te to the virtual enforced place as shown in Fig. 
5-(c). 

Other synchronization attributes, such as “begin”, “end’,  
and “dur”, could also be associated with <seq> and <par>, 
but the conversion is similar to that in the media object 
elements that we present in the following. 

C. Converting the media object elements 

The media object elements allow the inclusion of media 
objects into a SMIL presentation. Media objects are included 
by reference (using a URI). One media object element 
naturally represents a regular place in RTSM. However, the 
attributes associated with the element require some more 
complex conversion. We examine and convert attributes 
“begin”, “end”, “dur” respectively in the following. 

(1) Converting the “begin” attribute 

This attribute specifies the time for the explicit begin of an 
element. Two types of values could be contained in the 
attribute: delay-value and event-value. A delay value is a 
clock-value to postpone the playback time of the element by 
the delay value. Therefore, one enforced place representing 
the delay time with the specified duration is added in front of 
the element as illustrated in Fig. 6-(a). The event-value 
requires the element begin when a certain event occurs. 
According to the specification of SMIL 1.0, the element X  
generating the event must be “in scope”, in other words, X  
must be a sibling of the element that contains the “begin” 
attribute. There are two variations for the event-value, which 
is shown in Fig. 6-(b) and 6-(c) respectively.  

In Fig. 6-(b), the “id(X)(n s)” value of “begin” attribute 
means that element Obj begins after its sibling X  has begun 
for n seconds. So one enforced place representing the delay 
time with value of summation of “X’s begin time” and “n 
seconds” is added in front of Obj element. Actually, from the 
semantic point of view, the case in the Fig. 6-(b) is only valid 
when elements X and Obj are child elements in  a <par> 
element. The other value of event-value for “begin” attribute 
is “id(X)(end)”, which means the Obj element begins right 
after element X ends. The case is actually the function of 
<seq>. Therefore, the value is only valid when X  is the direct 
predecessor of the element Obj in a <seq> element, and it 
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introduces nothing to RTSM. 

(2) Converting the “end” attribute 

This attribute specifies the explicit end of an element. 
There are also three possible values for the attribute as in the 
“begin” attribute. We illustrate the conversion of them in Fig. 
7. In Fig. 7-(a), a clock value represents the end time from the 
original timebase of the element. So one enforced place with 
the clock value is added between the original start transition 
and the end transition. In Fig. 7-(b), the “id(X)(n s)” value of 
“end” attribute means that element Obj ends when his sibling 
X has begun for n seconds. Therefore, there is a enforced 
place between the actual start transition of X and the end 
transition of Obj. Finally, Fig. 7-(c ) illustrates the case of 
value “id(X)(end)”, which means element Obj must end when 
element X ends. 

(3) Converting the “dur” attribute 

This attribute specifies the explicit duration of an element. 
Therefore, the value of the “dur” attribute, which is a clock 
value, forms an enforced place between the actual start 
transition and the end transition. We illustrate the effect of the 
attribute in Fig. 8. 

D. Hyperlinks in SMIL 

As specified in the SMIL 1.0 specification, the hyperlink 
element <a> is transparent when playing the presentation 
until the user activates the link and starts a new presentation. 
Thus, only child elements of the element <a> are converted 
to RTSM, which is the same as previous sections. 

E. Simplifying the obtained RTSM 

As mentioned in the above section, some virtual (enforced) 
places are added in the RTSM during the converting process. 
However, there are some cases of RTSM that could be 
simplified by applying three rules, which are shown in Fig. 9. 
First, if the only input of a transition is a media place and the 
only output of the transition is a virtual place, we could 
naturally replace the case with the media place only since the 
virtual place is actually dummy (Fig. 9-1). Second, if the only 
output of the transition in rule (1) is a virtual enforced place, 
it means the firing of the media place will enforce to fire the 
following transition of the virtual enforced place. We could 
replace the case by changing the media place to an enforced 
one as shown in Fig. 9-2. Third, if there is only one virtual 
place between two transitions, the two transitions could be 
combined into one transition as shown in Fig. 9-3. 

F. An example for the conversion 

Fig. 10 shows a sample SMIL document, in which only 
temporal information is displayed. To make the sample 
clearer,  the lifetime for each object in the example is shown 
in Fig. 11. The initial RTSM right after the converting 
process is shown in Fig. 12 and the simplified RTSM for the 
example is shown in Fig. 13. 

SMIL 1.0 also introduced the “repeat” attribute, which is  
used to repeat a media element or an entire time container, 
such as <seq> or <par>. With the presence of the “repeat” 
attribute, the RTSM model for the element is copied for the 
number of times specified by the value of the “repeat” 
attribute. 
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IV.  DETERMINING THE OBJECT REQUEST TIME 

In order to compute the request time for each object, the 
data-retrieving engine has to know the implicit duration 
(intrinsic playback time) for each media object and has to 
estimate the transmission delay from the data server to the 
data-retrieving engine. Therefore, after the converting 
procedure, the data-retrieving engine sends the probe packet 
to each data server that provides the media object for the 
presentation. When receiving the probe packet, the data 
server has to estimate the transmission rate (bandwidth) 
[14-17] that it could support to transmit the requested object 
to the data-retrieving engine. We denote the estimated 
bandwidth as EstBWURI-i for object URI-i. The data server 
then acknowledges the probe packet by sending three 
parameters about the object back to the data-retrieving engine: 
(1) EstBWURL-i, (2) the implicit duration of the object, and (3) 
the size of the object, which is denoted by SizeURI-i. 

When the data-retrieving engine receives the 
acknowledgement from the data server, it measures the 
round-trip delay, which is denoted by RT-DelayURI-i, to the 
data server. With the information provided by the data server, 
we could then determine the schedule for each object in the 
presentation and estimate the request time for each object. 

A. Calculation of the playback time 

The playback time for object URI-i, which is denoted by 
PB-TimeURI-i, is actually the firing time of the start transition 
of URI-i in RTSM. To compute the firing time for each 
transition, we have to follow the progress of RTSM. Since 
there are usually more than one place that feeds to a transition, 
the behavior of the transition depends on the type of places 
that feed into it. If a transition is fed by some enforced places, 

the enforced places will dominate the behavior of the 
transition. In other words, if a transition is fed by some 
enforced places, other regular places can not affect the firing 
time of the transition at all. Thus, we reduce the RTSM model 
by removing the regular places that feed to a transition with 
enforced places. The reduced RTSM for the example in Fig. 
13 is shown in Fig. 14. 

The playback time for each object is computed by 
traversing the reduced RTSM transition by transition from the 
initial place (i.e. the start of the presentation). There are only 
two possibilities for one transition in the reduced RTSM: (1) 
places that feed to the transition are all enforced places, or (2) 
places that feed to the transition are all regular places. For 
possibility (1), the firing time of the transition is the minimal 
value of “the firing time of the preceding transition” plus “the 
duration of the following place of the preceding transition”, 
which is illustrated in Fig. 15-(a). Fig. 15-(b) shows the case 
of possibility (2), in which transition Tx is fired only after all 
its preceding regular places finish playing. Therefore, for 
possibility (2), the firing time of transition Tx is the maximum 
value of “the firing time of the preceding transition” plus “the 
duration of the following place of the preceding transition”. 
The duration of each place depends on the type of the media 
object. For an enforced place of time medium, the duration of 
the place is the value of the duration. For static media objects, 
such as <img> and <text>, the duration of the place is zero. 
For continuous media objects, such as <audio> and <video>, 

<seq> 
 <par> 
  <seq> 
 <img src=URI-1 dur=”5s” /> 
 <img src=URI-2 dur=”5s” /> 
  </seq> 
  <audio src=URI-3, begin=”2s” /> 
 </par> 
   <video src=URI-4 begin=”3s” end=”10s” />
</seq> 

Fig. 10. Sample SMIL Document 
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the duration of the place is the implicit duration of the object 
that is provided by the data server. Since the objects stored in 
a data server are all pre-orchestrated, it is easy for the data 
server to obtain the implicit duration of a continuous object. 
Assuming that the implicit duration for URI-3 in Fig. 13 is 10 
seconds, the playback time for each object in the example of 
Fig. 13 is shown in Fig. 16. 

B. Determining the request time 

Since the just-in-time policy requires the data-retrieving 
process to finish right before the playback time of the object, 
the latest request time will be the playback time of the object 
minus the total time to finish retrieving the object. The total 
time to finish retrieving object URI-i is the summation of the 
time for the request packet arrived to the server and the 
transmission time of the requested object from the server to 
the data-retrieving engine. The time for the request packet 
arrived to the server could be estimated as the measured 
round-trip delay from the server to the data-retrieving engine, 
i.e. RT-DelayURI-i. The transmission time of object URI-i is 
estimated as SizeURI-i /EstBWURI-i, in which SizeURI-i and 
EstBWURI-i are provided by the data server as mentioned in 
section IV. Therefore, the latest request time for object URI-i  
is PB-TimeURI-i – (RT-DelayURI-i + SizeURI-i /EstBWURI-i). The 
negative value of the latest request time for an object means 
we have to retrieve the object before the presentation starts. 

Note that if the object is a streaming object, it is not 
necessary to retrieve the whole content of the object before 
its playback time. Only the amount of data to support the 
streaming operation is required. Thus, the transmission time 

of the object is BufferSizeURI-i /EstBWURI-i, in which 
BufferSizeURI-i is the amount of data to buffer. The value of 
BufferSizeURI-i depends on the streaming operation and is not 
addressed in the paper.  

C. Discussion 

It is easy to see that the accuracy of bandwidth estimation 
affects the performance of the data-retrieving engine as well 
as the quality of the presentation. There are some research 
results [14-17] for the bandwidth estimation (bandwidth 
modeling) in the literature. Since the network behavior is 
very dynamic, it is impossible to exactly estimate the time 
required to finish the retrieving process for a media object. 
Thus, we discuss the impact of the accuracy of estimated 
time to finish the retrieving process for a media object on the 
performance of the data-retrieving engine. 

If the estimated time is more pessimistic (bandwidth is 
underestimated) than the actual status, the object will be 
buffered for some time before its playback time. On the other 
hand, if the estimated time is more optimistic (bandwidth is 
overestimated) than the actual status (e.g. network is 
congested), the presentation will probably be paused to wait 
for the object. On the other hand, if the network bandwidth 
from each data server to the data-retrieving engine could be 
reserved in advance (for example, by some booking method), 
the estimated request time for each object will be more 
precise. Hence, the quality of the presentation and the buffer 
utilization will also be improved. 

Some simulations are conducted to investigate the impact 
of the bandwidth estimation. The test SMIL file used in the 
simulations is consist of ten media objects with similar size 
(2.5k bytes ~ 5k bytes). Three retrieving policies, pre -loading, 
passive-loading, and just-in-time policies as mentioned in 
section I, are compared in the simulations. The performance 
criterion is the offset between the playback time and the 
arrival time of the object (i.e. offset = playback time – arrival 
time). Positive value of the offset implies the buffered time 
for the object before playback, while negative value of the 
offset indicates the amount of pause time in the presentation 
to wait for the object to arrive. We simulated the just-in-time 
policy with four error cases in bandwidth estimation as 
shown in Fig. 17. Error cases of –10% and –50% in 
bandwidth estimation indicate the amount of underestimated 
bandwidth, while cases of +10% and +50% indicate the 
overestimated bandwidth. Fig. 17 (object ID for x-axis, and 
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offset for y-axis) shows that the just-in-time policy is better 
than the other two policies, even with worse bandwidth 
estimations. 

V. CONCLUSION 

 In this paper, a smart data-retrieving engine for 
SMIL-based distributed multimedia presentations is proposed. 
The just-in-time policy for data retrieval is adopted by the 
engine, which requires the retrieval process for an object to 
be finished right before the playback time of the object so 
that the player could continue the presentation smoothly. To 
meet the goal of the policy, the synchronization relationship 
among objects in the presentation is extracted and presented 
by the Real-Time Synchronization Model, which provides a 
systematic point of view for the synchronization relationship. 
RTSM helps the data-retrieving engine be able to handle the 
temporal relationship more easily. By analyzing RTSM and 
considering the network condition, the request time of each 
object could be determined. The data-retrieving engine then 
make the request to the data server to fetch the proper object 
for the ongoing presentation according to the pre-computed 
request time. Simulation results show that the proposed 
data-retrieving engine with the just-in-time policy could 
achieve better performance for the distributed multimedia 
presentation.  
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