
Design of the Data-Retrieving Engine for Distributed Multimedia Presentations

Chun-Chuan Yang
Multimedia and Communications Laboratory

Department of Computer Science and Information Engineering
National Chi-Nan University, Taiwan, R.O.C.

ccyang@csie.ncnu.edu.tw

Abstract— To provide the smooth progress of a SMIL-based
distributed multimedia presentation, the data-retrieving engine
for the player must pre-fetch each object before its playback
time. In this paper, a smart data-retrieving engine is proposed,
which adopts a retrieval policy named the just-in-time policy.
The policy requires the retrieval process of an object to be
finished right before the playback time of the object. By
converting the synchronization relationship of objects in the
SMIL document to the Real-Time Synchronization Model,
which simplifies the handling of the synchronization relationship,
and considering the network condition, the data-retrieving
engine could determine the request time for each object. The
engine then makes the request to fetch each object for the
ongoing presentation according to the pre-computed request
time, and provides the player with proper media objects for
smooth playback of the presentation.

Index Terms— Distributed multimedia presentation, SMIL,
Real-time synchronization model (RTSM)

I. INTRODUCTION

Distributed multimedia presentation [1-3] is concerning
with viewing a presentation via the network as shown in Fig.
1. Some or all the media objects in the presentation could be
somewhere else in the network instead of the site where the
viewer is. There are two major issues to be addressed in the
distributed multimedia presentation. First, it requires a script
language to describe both the spatial relationship and the
temporal relationship among distributed media objects in the
presentation. The spatial relationship is about the visual
layout of media objects in the presentation, while the
temporal relationship which is also called synchronization
relationship [4-6] is concerning with the timing control of
media objects. The World Wide Web Consortium (W3C)
developed the Synchronization Multimedia Integration
Language (SMIL) [7-10] that allows the use of a text editor to
write multimedia presentations. With the efforts of W3C,
SMIL will become the most popular language in authoring
multimedia presentations. This paper is thus focus on the
SMIL-based presentations.

Second, since the media objects in the presentation are
distributed over the network, the browser or the playback
application (player) for the presentation must deal with the
random behavior of the network and provide a smooth
playback to the viewer. The quality of the playback depends
on the data-retrieving engine, which should retrieve the
proper media object before the object’s playback time
according to the synchronization relationship of the
presentation. Two extreme policies for data retrieving could
be adopted. First, retrieve all objects before starting the
presentation, or second, do not make the request to retrieve

the object until the object’s playback time. The first policy is
called the pre-loading policy, and the second policy is called
the passive-loading policy in the paper. The pre-loading
policy guarantees the smooth playback in the cost of a long
initial delay and a large buffer for all objects. Moreover, since
the viewer could activate hyperlinks in an ongoing
presentation as in SMIL, it is improper to pre-fetch all media
objects in advance. Minimal buffer is required for the second
policy, but it introduces gaps between the request time and
the finish time of object retrieval because of the network
delay. It implies that the smooth playback is impossible for
the passive-loading policy.

The proposed data-retrieving engine adopts a better policy
that is called the just-in-time policy. The policy requires the
retrieval process for an object to be finished right before the
playback time of the object so that the player could continue
the presentation smoothly. Under such policy, the
data-retrieving engine only buffers necessary objects for the
smooth progress of the presentation, thus it has a better buffer
utilization and network bandwidth efficiency.

In order to estimate the request time for an object under the
just-in-time policy, the data-retrieving engine has to extract
the synchronization relationship from the SMIL document to
determine the playback time for each object in the
presentation. By considering both the playback time of each
object and the transmission delay of the network, the request
time for each object could be determined. The data-retrieving
engine then makes the request to the data server for an object
according to the pre-computed request time for that object.

To deal with the synchronization relationship efficiently, a
synchronization model [4, 11, 12], which provides a
systematic view of the synchronization relationship specified
in the SMIL script, is necessary for the data-retrieving engine.
A Petri-net based model namely OCPN (Object Composition

 Script

Data server

Data server

Data server Data server

URI-1

URI-2

URI-3
URI-k

Network

…

Fig. 1. Distributed multimedia presentation

Player

Petri Net) was proposed to model the synchronization
relationship among media objects [11]. However, we had
shown that OCPN is not suitable for real-time network
applications, and instead the Real-Time Synchronization
Model (RTSM) was proposed [13]. Moreover, some
synchronization behaviors that could be specified in SMIL
make RTSM more suitable than OCPN. For example, SMIL
allows the author to set the explicit beginning time, duration,
or end time for a media object. RTSM could easily model the
synchronization behaviors as will be explained in section III,
but OCPN could not. Therefore, RTSM is adopted in the
proposed data-retrieving engine. Before going through the
details of the data-retrieving engine, we make a brief survey
of RTSM in the following.

The elements in RTSM include place, token, and transition
as in OCPN. However, there are two kinds of places in
RTSM, regular places and enforced places. A different firing
rule for enforced places is defined. The rule specifies that
once an enforced place becomes unblocked (in other words,
the related action with the place is completed), the transition
following it will be immediately fired regardless the states of
other places feeding the same transition. An example of
RTSM is shown in Fig. 2 in which a single circle is for the
regular place, a double circle is for the enforced place, and a
bar is drawn for the transition. The RTSM in the figure
requires that audio segment audio1 and two video clips
video1 and video2 be played simultaneously, in which video2
follows video1. Since audio1 is an enforced place, transition
T3 is fired right after audio1 is finished, regardless of
whether video2 has finished or not. After firing T3, image1 is
displayed for 5 seconds then transition T4 is fired. Note that
the enforced place of “Time = 5s” in the figure is not a media
object but a virtual medium that is called Time Medium [13].
The time medium is used to represent time duration. For
more details of RTSM, please reference paper [13].

The remainder of the paper is organized as follows. The
architecture of the proposed data-retrieving engine is
explained in section II. Section III presents the algorithm of
converting the SMIL temporal relationship to RTSM. In
section IV, the method of determining the playback time and
the estimated request time for each object is explained.
Finally, section V concludes the paper.

II. ARCHITECTURE OF THE DATA-RETRIEVING ENGINE

The functional architecture of the proposed data-retrieving
engine is shown in Fig. 3. The engine accepts the SMIL script
from the player, and provides necessary media object data to
the player for maintaining the smooth progress of the
ongoing presentation. There are mainly four steps for the
data-retrieving engine. First, the synchronization relationship
is extracted from the SMIL script and is represented by

RTSM. Second, the playback time for each object must be
computed, and third, the request time for each object is
determined. Lastly, each object is requested according to the
computed request time for the object. The conversion of
SMIL to RTSM and the method that determining the request
time are presented in the following sections.

III. CONVERTING SMIL TO RTSM

In this section, the synchronization elements in SMIL are
examined, and the algorithm that converts the elements to
RTSM is presented. There are three kinds of synchronization
elements in SMIL to be converted: the <seq> element, the
<par> element, and the class of media object elements such
as , <video>, <audio> and <text>, etc [7]. Besides,
some synchronization related attributes such as “begin”,
“dur”, and “end” could be associated with these
synchronization elements. We assume that the player has
checked the syntax of the SMIL document, so the
data-retrieving engine only performs necessary conversion.

A. Converting the <seq> element

The <seq> element defines a sequence of elements in
which elements play one after the other. The children
elements of the <seq> element could be any of the
synchronization elements such as <seq>, <par>, or the media
object elements, so the conversion is a recursive procedure.
Since the children of a <seq> element form a temporal
sequence, we concatenate each child of <seq> one by one in
RTSM as illustrated in Fig. 4. Note that there are virtual
places (denoted by the dashed circle) in the figure. They are
used to maintain the consistency of RTSM, since the arc
could only be the link between a transition and a place. In
fact, the virtual place is a regular place that maps to the time
medium with zero duration.

B. Converting the <par> element

The <par> element defines a simple parallel time grouping
in which multiple elements can play back at the same time.
Thus, all children of <par> should be within the same pair of

Fig. 2. Example of RTSM

audio1

video1 video2 image1

Time = 5s

…

T1

T2

T3 T4

Player

SMIL

Data Retrieving Engine

1. SMIL => RTSM

2. Determine the playback time for each
object

3. Determine the request time for each
object

4. Data retrieving

Object Data

Network

Fig. 3. Overview of the data retrieving engine

transition (Ts, Te) as illustrated in Fig. 5. There are three
variations for <par> since a special attribute, “endsync”,
could be associated with <par>. The “endsync” attribute
controls the end of the <par> element, as a function of
children. Legal values for the attribute are “last”, “first”, and
“id-ref”.

The value of “last” requires <par> to end with the last end
of all the child elements, and the corresponding RTSM is
shown in Fig. 5-(a), in which transition Te could not be fired
unless all the children end. The value of “first” requires
<par> to end with the earliest end of all the child elements.
Therefore, we should change the places between each child
element and transition Te to virtual enforced places as
illustrated in Fig. 5-(b) so that the child that ends first will
fire transition Te. A virtual enforced place is an enforced
place that maps to the time medium with zero duration. The
value of “id-ref” requires <par> to end with the specified
child. So we change the place between the specified child and
transition Te to the virtual enforced place as shown in Fig.
5-(c).

Other synchronization attributes, such as “begin”, “end’,
and “dur”, could also be associated with <seq> and <par>,
but the conversion is similar to that in the media object
elements that we present in the following.

C. Converting the media object elements

The media object elements allow the inclusion of media
objects into a SMIL presentation. Media objects are included
by reference (using a URI). One media object element
naturally represents a regular place in RTSM. However, the
attributes associated with the element require some more
complex conversion. We examine and convert attributes
“begin”, “end”, “dur” respectively in the following.

(1) Converting the “begin” attribute

This attribute specifies the time for the explicit begin of an
element. Two types of values could be contained in the
attribute: delay-value and event-value. A delay value is a
clock-value to postpone the playback time of the element by
the delay value. Therefore, one enforced place representing
the delay time with the specified duration is added in front of
the element as illustrated in Fig. 6-(a). The event-value
requires the element begin when a certain event occurs.
According to the specification of SMIL 1.0, the element X
generating the event must be “in scope”, in other words, X
must be a sibling of the element that contains the “begin”
attribute. There are two variations for the event-value, which
is shown in Fig. 6-(b) and 6-(c) respectively.

In Fig. 6-(b), the “id(X)(n s)” value of “begin” attribute
means that element Obj begins after its sibling X has begun
for n seconds. So one enforced place representing the delay
time with value of summation of “X’s begin time” and “n
seconds” is added in front of Obj element. Actually, from the
semantic point of view, the case in the Fig. 6-(b) is only valid
when elements X and Obj are child elements in a <par>
element. The other value of event-value for “begin” attribute
is “id(X)(end)”, which means the Obj element begins right
after element X ends. The case is actually the function of
<seq>. Therefore, the value is only valid when X is the direct
predecessor of the element Obj in a <seq> element, and it

Child-1 Child-2 Child-n…

Fig. 4. Convert the <seq> element to RTSM

: virtual place

Ts Te

(a) endsync = “last” (default)

Child-1

Child-2

Child-n

…

Child-1

Child-2

Child-n

…

Fig. 5. Convert the <par> element to RTSM

(b) endsync = “first”

Child-1

Child-2

Child-n

…

(c) endsync = “id(Child-n)”

: virtual place : virtual enforced place

Ts Te Ts Te Ts Te

(a) begin = “n s”

Obj

Fig. 6. Effect of “begin” attribute on RTSM

(b) begin = “id(X)(n s)”

Obj

“n s”
(X’s begin time) + n

(c) begin = “id(X)(end)”

Valid when X is the direct
predecessor of Obj within a
<seq> element.

timebase actual start end

X must be Obj’s sibling

introduces nothing to RTSM.

(2) Converting the “end” attribute

This attribute specifies the explicit end of an element.
There are also three possible values for the attribute as in the
“begin” attribute. We illustrate the conversion of them in Fig.
7. In Fig. 7-(a), a clock value represents the end time from the
original timebase of the element. So one enforced place with
the clock value is added between the original start transition
and the end transition. In Fig. 7-(b), the “id(X)(n s)” value of
“end” attribute means that element Obj ends when his sibling
X has begun for n seconds. Therefore, there is a enforced
place between the actual start transition of X and the end
transition of Obj. Finally, Fig. 7-(c) illustrates the case of
value “id(X)(end)”, which means element Obj must end when
element X ends.

(3) Converting the “dur” attribute

This attribute specifies the explicit duration of an element.
Therefore, the value of the “dur” attribute, which is a clock
value, forms an enforced place between the actual start
transition and the end transition. We illustrate the effect of the
attribute in Fig. 8.

D. Hyperlinks in SMIL

As specified in the SMIL 1.0 specification, the hyperlink
element <a> is transparent when playing the presentation
until the user activates the link and starts a new presentation.
Thus, only child elements of the element <a> are converted
to RTSM, which is the same as previous sections.

E. Simplifying the obtained RTSM

As mentioned in the above section, some virtual (enforced)
places are added in the RTSM during the converting process.
However, there are some cases of RTSM that could be
simplified by applying three rules, which are shown in Fig. 9.
First, if the only input of a transition is a media place and the
only output of the transition is a virtual place, we could
naturally replace the case with the media place only since the
virtual place is actually dummy (Fig. 9-1). Second, if the only
output of the transition in rule (1) is a virtual enforced place,
it means the firing of the media place will enforce to fire the
following transition of the virtual enforced place. We could
replace the case by changing the media place to an enforced
one as shown in Fig. 9-2. Third, if there is only one virtual
place between two transitions, the two transitions could be
combined into one transition as shown in Fig. 9-3.

F. An example for the conversion

Fig. 10 shows a sample SMIL document, in which only
temporal information is displayed. To make the sample
clearer, the lifetime for each object in the example is shown
in Fig. 11. The initial RTSM right after the converting
process is shown in Fig. 12 and the simplified RTSM for the
example is shown in Fig. 13.

SMIL 1.0 also introduced the “repeat” attribute, which is
used to repeat a media element or an entire time container,
such as <seq> or <par>. With the presence of the “repeat”
attribute, the RTSM model for the element is copied for the
number of times specified by the value of the “repeat”
attribute.

Fig. 7. Effect of “end” attribute on RTSM

(a) end = “n s” (b) end = “id(X)(n s)” (c) end = “id(X)(end)”

Obj

“n s”

(begin)

timebase actual start end

Obj

(begin)

…
X

X must be Obj’s sibling

…

“n s”

Obj

(begin)

…
X

X must be Obj’s sibling

…
“0 s”

Fig. 8. Effect of “dur” attribute on RTSM

 dur = “n s”

Obj

(end)

(begin)

n s

Fig. 9. Three rules to simplify RTSM

URI-i URI-i

URI-i URI-i

0s

0s

0s

1

2

3

IV. DETERMINING THE OBJECT REQUEST TIME

In order to compute the request time for each object, the
data-retrieving engine has to know the implicit duration
(intrinsic playback time) for each media object and has to
estimate the transmission delay from the data server to the
data-retrieving engine. Therefore, after the converting
procedure, the data-retrieving engine sends the probe packet
to each data server that provides the media object for the
presentation. When receiving the probe packet, the data
server has to estimate the transmission rate (bandwidth)
[14-17] that it could support to transmit the requested object
to the data-retrieving engine. We denote the estimated
bandwidth as EstBWURI-i for object URI-i. The data server
then acknowledges the probe packet by sending three
parameters about the object back to the data-retrieving engine:
(1) EstBWURL-i, (2) the implicit duration of the object, and (3)
the size of the object, which is denoted by SizeURI-i.

When the data-retrieving engine receives the
acknowledgement from the data server, it measures the
round-trip delay, which is denoted by RT-DelayURI-i, to the
data server. With the information provided by the data server,
we could then determine the schedule for each object in the
presentation and estimate the request time for each object.

A. Calculation of the playback time

The playback time for object URI-i, which is denoted by
PB-TimeURI-i, is actually the firing time of the start transition
of URI-i in RTSM. To compute the firing time for each
transition, we have to follow the progress of RTSM. Since
there are usually more than one place that feeds to a transition,
the behavior of the transition depends on the type of places
that feed into it. If a transition is fed by some enforced places,

the enforced places will dominate the behavior of the
transition. In other words, if a transition is fed by some
enforced places, other regular places can not affect the firing
time of the transition at all. Thus, we reduce the RTSM model
by removing the regular places that feed to a transition with
enforced places. The reduced RTSM for the example in Fig.
13 is shown in Fig. 14.

The playback time for each object is computed by
traversing the reduced RTSM transition by transition from the
initial place (i.e. the start of the presentation). There are only
two possibilities for one transition in the reduced RTSM: (1)
places that feed to the transition are all enforced places, or (2)
places that feed to the transition are all regular places. For
possibility (1), the firing time of the transition is the minimal
value of “the firing time of the preceding transition” plus “the
duration of the following place of the preceding transition”,
which is illustrated in Fig. 15-(a). Fig. 15-(b) shows the case
of possibility (2), in which transition Tx is fired only after all
its preceding regular places finish playing. Therefore, for
possibility (2), the firing time of transition Tx is the maximum
value of “the firing time of the preceding transition” plus “the
duration of the following place of the preceding transition”.
The duration of each place depends on the type of the media
object. For an enforced place of time medium, the duration of
the place is the value of the duration. For static media objects,
such as and <text>, the duration of the place is zero.
For continuous media objects, such as <audio> and <video>,

<seq>
 <par>
 <seq>

 </seq>
 <audio src=URI-3, begin=”2s” />
 </par>
 <video src=URI-4 begin=”3s” end=”10s” />
</seq>

Fig. 10. Sample SMIL Document

Start

Fig. 11. Lifetime for each object in the sample

img(URI-1)

img(URI-2)

Time

audio(URI-3)

5s

5s

2s

audio duration

video(URI-4)

3s

10s

URI-4 3s

10s

URI-1

5s

URI-2

5s

URI-3 2s 0s

Fig. 12. Initial RTSM for the sample SMIL document

0s

0s

0s

0s

0s

initial
place

Fig. 13. Simplified RTSM for the sample SMIL document

URI-4 3s

10s

URI-1

5s

URI-2

5s

URI-3 2s

0s

0s

0s

0s

initial
place

URI-4 3s

10s

URI-1

5s

URI-2

5s

URI-3 2s

Fig. 14. Reduced RTSM for the sample SMIL document

0s

0s

0s

0s

initial
place

the duration of the place is the implicit duration of the object
that is provided by the data server. Since the objects stored in
a data server are all pre-orchestrated, it is easy for the data
server to obtain the implicit duration of a continuous object.
Assuming that the implicit duration for URI-3 in Fig. 13 is 10
seconds, the playback time for each object in the example of
Fig. 13 is shown in Fig. 16.

B. Determining the request time

Since the just-in-time policy requires the data-retrieving
process to finish right before the playback time of the object,
the latest request time will be the playback time of the object
minus the total time to finish retrieving the object. The total
time to finish retrieving object URI-i is the summation of the
time for the request packet arrived to the server and the
transmission time of the requested object from the server to
the data-retrieving engine. The time for the request packet
arrived to the server could be estimated as the measured
round-trip delay from the server to the data-retrieving engine,
i.e. RT-DelayURI-i. The transmission time of object URI-i is
estimated as SizeURI-i /EstBWURI-i, in which SizeURI-i and
EstBWURI-i are provided by the data server as mentioned in
section IV. Therefore, the latest request time for object URI-i
is PB-TimeURI-i – (RT-DelayURI-i + SizeURI-i /EstBWURI-i). The
negative value of the latest request time for an object means
we have to retrieve the object before the presentation starts.

Note that if the object is a streaming object, it is not
necessary to retrieve the whole content of the object before
its playback time. Only the amount of data to support the
streaming operation is required. Thus, the transmission time

of the object is BufferSizeURI-i /EstBWURI-i, in which
BufferSizeURI-i is the amount of data to buffer. The value of
BufferSizeURI-i depends on the streaming operation and is not
addressed in the paper.

C. Discussion

It is easy to see that the accuracy of bandwidth estimation
affects the performance of the data-retrieving engine as well
as the quality of the presentation. There are some research
results [14-17] for the bandwidth estimation (bandwidth
modeling) in the literature. Since the network behavior is
very dynamic, it is impossible to exactly estimate the time
required to finish the retrieving process for a media object.
Thus, we discuss the impact of the accuracy of estimated
time to finish the retrieving process for a media object on the
performance of the data-retrieving engine.

If the estimated time is more pessimistic (bandwidth is
underestimated) than the actual status, the object will be
buffered for some time before its playback time. On the other
hand, if the estimated time is more optimistic (bandwidth is
overestimated) than the actual status (e.g. network is
congested), the presentation will probably be paused to wait
for the object. On the other hand, if the network bandwidth
from each data server to the data-retrieving engine could be
reserved in advance (for example, by some booking method),
the estimated request time for each object will be more
precise. Hence, the quality of the presentation and the buffer
utilization will also be improved.

Some simulations are conducted to investigate the impact
of the bandwidth estimation. The test SMIL file used in the
simulations is consist of ten media objects with similar size
(2.5k bytes ~ 5k bytes). Three retrieving policies, pre -loading,
passive-loading, and just-in-time policies as mentioned in
section I, are compared in the simulations. The performance
criterion is the offset between the playback time and the
arrival time of the object (i.e. offset = playback time – arrival
time). Positive value of the offset implies the buffered time
for the object before playback, while negative value of the
offset indicates the amount of pause time in the presentation
to wait for the object to arrive. We simulated the just-in-time
policy with four error cases in bandwidth estimation as
shown in Fig. 17. Error cases of –10% and –50% in
bandwidth estimation indicate the amount of underestimated
bandwidth, while cases of +10% and +50% indicate the
overestimated bandwidth. Fig. 17 (object ID for x-axis, and

3s

10s

5s 5s

URI-3 2s

Fig. 16. Computing the playback time for each object

0s

0s

0s

0s

initial
place

PB-TimeURI-1=0s

Duration=10s

PB-TimeURI-2=5s

PB-Time=10s

PB-Time=12s

PB-Time=12s

PB-TimeURI-4=15s

PB-TimeURI-3=2s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10

Object ID (in time order)

O
ff

se
t b

et
w

ee
n

pl
ay

ba
ck

 ti
m

e
an

d
ar

ri
va

l t
im

e
(s

ec
)

Pre-loading policy
Passive-loading policy
Just-in-time, -10% error in EstBW
Just-in-time, +10% error in EstBW
Just-in-time, -50% error in EstBW
Just-in-time, +50% error in EstBW

-50% -10%

+10% +50%

Fig. 17. Simulation result

Fig. 15. Determine the active time for transition T x

…

T 1

T 2

T n

T x

(a) T x = Min(T 1+D1, … , T n+Dn)

D1

D2

DN

…

T 1

T 2

T n

T x

(b) T x = Max(T 1+D1, … , Tn+Dn)

D1

D2

DN

…

…

…

…

…

…

offset for y-axis) shows that the just-in-time policy is better
than the other two policies, even with worse bandwidth
estimations.

V. CONCLUSION

 In this paper, a smart data-retrieving engine for
SMIL-based distributed multimedia presentations is proposed.
The just-in-time policy for data retrieval is adopted by the
engine, which requires the retrieval process for an object to
be finished right before the playback time of the object so
that the player could continue the presentation smoothly. To
meet the goal of the policy, the synchronization relationship
among objects in the presentation is extracted and presented
by the Real-Time Synchronization Model, which provides a
systematic point of view for the synchronization relationship.
RTSM helps the data-retrieving engine be able to handle the
temporal relationship more easily. By analyzing RTSM and
considering the network condition, the request time of each
object could be determined. The data-retrieving engine then
make the request to the data server to fetch the proper object
for the ongoing presentation according to the pre-computed
request time. Simulation results show that the proposed
data-retrieving engine with the just-in-time policy could
achieve better performance for the distributed multimedia
presentation.

REFERENCES

[1] Taeil Jeong, Jae Wook Ham, and Sung Jo Kim, “A
pre-scheduling mechanism for multimedia presentation
synchronization,” Proceedings., IEEE International
Conference on Multimedia Computing and Systems '97,
1997, pp. 379-386.

[2] R. Paul, M. F. Khan, S. Baqai, and A. Ghafoor,
“Real-time scheduling for synchronized presentation of
multimedia information in distributed multimedia
systems,” Proceedings., Third International Workshop
on Object-Oriented Real-Time Dependable Systems,
1997, pp. 177-184.

[3] De Lima, R. M. et al., “SAMM: An integrated
Environment to Support Multimedia Synchronization
of Pre -orchestrated Data,” Proceedings., IEEE
International Conference on Multimedia Computing
and Systems, 1999, pp. 929-933.

[4] Chung-Ming Huang and Chian Wang,
“Synchronization for interactive multimedia
presentations,” IEEE Multimedia, Oct.-Dec. 1998, pp.
44–62.

[5] I. F. Cruz and P. S. Mahalley, “Temporal

Synchronization in Multimedia Presentations,”
Proceedings., IEEE International Conference on
Multimedia Computing and Systems, 1999, pp.
851-856.

[6] Z. Yang, et al., “A New Look at Multimedia
Synchronization in Distributed Environments,”
Proceedings., 4th International Symposium on Parallel
Architectures, Algorithms, and Networks, (I-SPAN '99),
1999, pp. 322 –327.

[7] Synchronized Multimedia Integration Language (SMIL)
1.0 Specification, W3C Recommendation, June 1998,
http://www.w3c.org/TR/REC-smil.

[8] Synchronized Multimedia Integration Language (SMIL)
Boston Specification , W3C Working Draft
20-August-1999, http://www.w3.org/TR/smil-boston.

[9] Larry Bouthillier, “Synchronized Multimedia on the
Web- A New W3C Format is All Smiles,” Web
Techniques Magazine, September 1998, Vol. 3 Issue 9.

[10] Philipp Hoschka, “An introduction to the Synchronized
Multimedia Integration Language,” IEEE Multimedia,
Oct.-Dec. 1998, pp. 84-88.

[11] T. D. C. Little, and A. Ghafoor, “Synchronization and
storage models for multimedia objects,” IEEE Journal
of Selected Area in Communications, vol. 8, no. 3, pp.
413-427, Apr. 1989.

[12] InHo Lin, Chwan-Chia Wu, and Bih -Hwang Lee, “A
synchronization model for multimedia presentation
with critical overlap avoidance,” Proceedings.
International Workshop on Multimedia Software
Engineering, 1998, pp. 36-43.

[13] C. C. Yang and J. H. Huang, “A Multimedia
Synchronization Model and its Implementation in
Transport protocols ,” IEEE Journal of Selected Area in
Communications, vol. 14, No. 1, pp. 212-225, Jan.
1996.

[14] J. Bolliger and Th. Gross, “A Framework-based
Approach to the Development of Network-Aware
Applications,” IEEE trans. Software Engineering, vol.
24, no. 5, pp. 376-390, May 1998.

[15] J. Bolliger and Th. Gross, “Bandwidth Modelling for
Network-Aware Applications,” Proceedings., IEEE
INFOCOM’99, pp. 1300-1309, 1999.

[16] K. Lai and M. Baker, “Measuring Bandwidth,”
Proceedings., IEEE INFOCOM’99, pp. 235-245, 1999.

[17] Vern Paxson, “End-to-End Internet Packet Dynamics,”
IEEE/ACM trans. Networking, vol. 7, no. 3, pp.
277-292, June 1999.

