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Abstract

A flexible bandwidth management scheme namely Bandwidth-based Polling (BBP) for Bluetooth is proposed. A framing structure of time

is defined in BBP, and the master allocates proper number of slots for each active slave in a frame. BBP allows the master to poll a slave more

than once to achieve high flexibility for bandwidth allocation. The calculation of the polling time as well as the payload type for a slave is

according to the bandwidth requirement of the slave and the limit of the frame size controlled by the master. Extension of BBP for supporting

slaves with the SCO link and slaves without bandwidth requirement (best-effort slaves) is also proposed. Simulation results have shown the

efficiency and fairness of BBP in bandwidth management. The flexibility of bandwidth allocation depends on the maximum polling time

preset by BBP. A larger maximum polling time makes the higher flexibility of bandwidth allocation at the expense of a longer latency before

reaching the equilibrium state. Analysis of the impact of the maximum polling time on bandwidth allocation is also presented in the paper.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Bluetooth; QoS; Bandwidth management; Polling scheme

1. Introduction

Bluetooth [1–5] is an emerging technology of ad hoc

networking that provides low power, low cost and low

complexity communications for electronic devices in a

small area. Bluetooth devices sharing a wireless channel

form a piconet. In a Bluetooth piconet, time slot is defined

for accessing the channel and the medium access scheme is

based on polling algorithm controlled by the master in a

Time Division Duplex fashion. More specifically, the

master sends packets to slaves in even-numbered slots

triggering a transmission from slaves in subsequent slot.

Slaves are allowed to send packets only in response to a

master packet. Most of the previous work of research in

Bluetooth focused on performance improvement in terms of

channel utilization. Different polling and scheduling

schemes as well as SAR (Segmentation and Reassembly)

policies for improving utilization in Bluetooth had been

proposed [6–12]. QoS support for Bluetooth [13,14] has

attracted less attention in the literature. There are some

research results for QoS support by polling strategy in

the wireless environment [15–19], but none of them can be

applied to Bluetooth because of the special MAC protocol

and different payload types of Bluetooth. In this paper, we

focus on QoS support for Bluetooth.

Bandwidth allocation is direct but important in support-

ing QoS to some extent for Bluetooth. A good bandwidth

management scheme should meet various bandwidth

requirements of slaves and maintain fairness when the

channel is saturated (over-requested). As the bandwidth is

over-requested, fairness means that (1) for those slaves with

a bandwidth requirement lower than the equal share of

channel capacity, they can get the amount of bandwidth they

have requested, and (2) the rest of the channel capacity is

equally allocated to the other slaves (i.e. slaves with a

bandwidth requirement higher than the equal share).

Thus, goals of bandwidth management should include

(1) bandwidth satisfaction and (2) fairness. A pure Round

Robin polling scheme with three payload types (1, 3, 5 slots)

is not enough to meet the first goal mentioned above, since

only three levels of bandwidth are provided. In this paper, a

flexible bandwidth management scheme namely Band-

width-based Polling (BBP) is proposed for bandwidth

allocation for slaves. A slave with bandwidth requirement

is called a QoS-slave in the paper. A slave requesting a SCO

connection (Synchronous Connection-Oriented link) is
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called a SCO-slave. Slaves that are neither QoS-slaves nor

SCO-slaves are called best effort slaves (denoted by

BE-slave). We assume that a slave can only be one of the

three types of slaves at the same time. Two versions of BBP

are proposed in this paper. The basic version of BBP namely

BBP-bas is for QoS-slaves only. The extension of basic

BBP namely BBP-ext can support all types of slaves in a

Bluetooth piconet. Moreover, with the scheduling algorithm

associated with BBP-ext, an upper bound of access delay for

a SCO-slave can be provided.

The rest of the paper is organized as follows. The basic

version of BBP as well as the actions of QoS-slaves and the

master in BBP-bas are presented in Section 2. The extension

of basic BBP (BBP-ext) for supporting SCO-slaves and

BE-slaves is presented in Section 3. The scheduling

algorithm of BBP-ext is presented in Section 4. Performance

evaluation of the proposed bandwidth management scheme is

presented in Section 5. Finally Section 6 concludes this paper.

2. Basic version of bandwidth-based polling (BBP-bas)

2.1. Basic idea and slot allocation for QoS-slaves

In order to allocate proper bandwidth, a framing structure

of time is defined. The master of the piconet allocates proper

number of slots in a frame for each active slave. The length

of the frame should not be static but dynamic for flexible

bandwidth allocation. Since only three payload types (1, 3, 5

slots) can be used for slaves, if the master equally polls each

active slave in a time frame, at most three levels of

bandwidth can be allocated, which greatly reduce the

flexibility of bandwidth allocation. Therefore, the proposed

BBP scheme allows the master to poll a slave more than

once in a time frame to achieve high flexibility.

Multiple polling for a slave implies that the slave can

transmit data by any combination of 1-, 3-, and 5-slot

payload in a frame. However, since a larger payload (e.g.

DH5) has higher utilization than a smaller one (e.g. DH1), it

is better for a slave to properly choose a larger payload for

each poll. Types of payload used in BBP are shown in

Table 1. The number of bytes (ByteCount) and the polling

time for each payload type are also shown in the table. Note

that the payload type higher than DH5 represents a

combination of DH5, DH3, and DH1. For example, DH8

means DH5 þ DH3 (polling twice), and DH11 means

DH5 þ DH5 þ DH1 (polling three times). Practically,

BBP should set an upper bound for the polling time,

which is denoted by K in the paper. The maximum polling

time K determines the maximum payload type (i.e. DH5*K)

for each slave as well as the maximum frame length.

Calculation of the number of slots and the polling time in

a frame for a given bandwidth requirement is explained in

the following. Given that the master restricts the frame size

of the piconet within a limit value namely PicoFrameLimit

(in slots) and the bandwidth requirement of QoS-slavei is

BwRQi (in bps), the maximum number of bytes (#Bytesi)

that needs to be transmitted in a frame for QoS-slavei is:

#Bytesi ¼ ðBwRQi*PicoFrameLimit*625msÞ=8:

Thus, the payload type for QoS-slavei in a frame is the

smallest one in Table 1 whose ByteCount . ¼#Bytesi or the

maximum payload type DH5*K; where K is the maximum

polling time predefined by BBP.

BBP adopts a progressive and distributed approach for

bandwidth allocation, which may cross several frames to

finish. The master and slaves in a piconet exchange

information in each frame for bandwidth management.

Initially, the payload type for an active slave is set as the

smallest one, i.e. DH1. During the bandwidth allocation

(negotiation) process, each QoS-slave tries to upgrade its

payload type to have a larger share of channel capacity to

fulfill its bandwidth requirement. On the other hand, the

master controls the bandwidth allocation by properly

changing (either enlarging or shrinking) the upper bound

of frame size (PicoFrameLimit). Moreover, BBP adopts the

soft-state bandwidth reservation, which means a QoS-slave

needs to issue its bandwidth request in each frame to

maintain its bandwidth share. Bandwidth requests that are

granted in a time frame are served in the next frame. In other

words, during a time frame, a QoS-slave is served the

bandwidth it has requested in the previous frame and

refreshes its bandwidth requirement for the following frame.

Details of the actions at the slave and the master of BBP-bas

are explained, respectively, in the following sections.

2.2. QoS-slave’s action in BBP-bas

When the master polls a slave, current frame size

(denoted by PicoFrameSize) and the upper bound of the

frame size (PicoFrameLimit) are passed to the slave. The

slave tries to upgrade its payload type from the previous

payload type (initially, DH1) allocated in the last frame.

New payload type (denoted by RequestSloti) is calculated

according to current PicoFrameLimit and the bandwidth

requirement of the slave (BwRQi) as mentioned above.

Since upgrading the payload type will increase the frame

size of the piconet (PicoFrameSize), upgrade of the payload

Table 1

Bytes and polling time for payload type in BBP

Payload type DH1 DH3 DH5 DH6 DH8 DH10 DH11 DH13 DH15 · · ·

Polling time 1 1 1 2 2 2 3 3 3 · · ·

ByteCount 27 183 339 366 522 678 705 861 1017 · · ·

Remarks 5 þ 1 5 þ 3 5 þ 5 5 þ 5 þ 1 5 þ 5 þ 3 5 þ 5 þ 5 · · ·
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type is successful only when the resulted frame size is still

smaller than current PicoFrameLimit. The idea is shown in

Fig. 1. Increase of the slots for the upgrade is easily

computed from the old payload type, the new payload type

(RequestSloti) as well as the change of the downstream slots

from the master to the slave.

If the upgrade is successful, number of slots allocated to

the slave in a frame (denoted by AllocateSloti) is

RequestSloti, if not, AllocateSloti ¼ DH1. Note that for

unsuccessful upgrade, the new payload type for the slave is

not set as the old one but the smallest payload type (DH1) so

that the following QoS-slaves may have more chance to

upgrade their payload types. Moreover, the slave computes

its expected frame limit (in slots, denoted by FrameLimiti)

according to the calculated payload type and its bandwidth

requirement. Calculation of FrameLimiti is similar to

the reverse of calculation of the payload type described in

Section 2.1:

FrameLimiti ¼ ðByteCount in RequestSlotiÞ

*8=ðBwRQi*625msÞ:

RequestSloti and FrameLimiti are both passed to the

master for updating PicoFrameSize and PicoFrameLimit.

The overall algorithm for QoS-slaves in BBP-bas is

displayed in Fig. 2.

2.3. Master’s action in BBP-bas

As mentioned above, the master passes PicoFrameSize

and PicoFrameLimit to a slave and collects/records

RequestSloti and FrameLimiti returned by the slave.

Fig. 1. Upgrading the payload type.

Fig. 2. The algorithm for QoS-slaves in BBP-bas.
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RequestSloti and FrameLimiti represent the bandwidth

request of the slave, and the master performs the same

check as the slave (i.e. whether the total number of slots is

under PicoFrameLimit or not) to grant the request or not. If

the request is granted (in this case, the slave’s

AllocateSloti ¼ RequestSloti), the increase of slots by the

upgrade is added to PicoFrameSize. Moreover, for a

successful upgrade, if received FrameLimiti ,

PicoFrameLimit, which means the upgrade should be

granted, but it does not satisfy the bandwidth requirement

of the slave. In other words, the slave has requested the

maximum payload type (AllocateSloti ¼ DH5*K) but still

cannot satisfy its BwRQi under current PicoFrameLimit. In

such case, the master reduces PicoFrameLimit to

FrameLimiti to allocate enough bandwidth for the slave.

PicoFrameLimit remains unchanged if received

FrameLimiti . PicoFrameLimit (i.e. BwRQi is satisfied).

The relationship of PicoFrameLimit and FrameLimiti for

successful upgrade is displayed in Fig. 3.

On the other hand, if the request is rejected (in this case,

the slave’s AllocateSloti ¼ DH1), the master knows the

upgrade is unsuccessful and enlarges PicoFrameLimit to a

proper value so that the slave may have a chance to upgrade

in the next frame. The master either sets the new value of

PicoFrameLimit as the smallest FrameLimiti that is larger

than the old PicoFrameLimit or just adds a proper number of

slots to the old PicoFrameLimit. Again, new values of

PicoFrameSize and PicoFrameLimit are passed to next

slave.

If the bandwidth requirements of all QoS-slaves in the

piconet have not changed, BBP-bas process reaches the

equilibrium state when PicoFrameSize and PicoFrame-

Limit remain unchanged for two consecutive frames.

The master reduces the value of PicoFrameLimit and

restarts the bandwidth negotiation process when an active

QoS-slave becoming inactive or leaving the piconet. The

algorithm for master’s actions in BBP-bas is shown in Fig. 4.

3. Supporting SCO-slaves and BE-slaves

in BBP (BBP-ext)

3.1. Supporting SCO-slaves

In the specification of Bluetooth [4], SCO links (SCO-

slaves) are served in a periodic manner to support

isochronous service. A parameter Tsco is defined to set the

length of the period. Given that the specification has defined

Tsco ¼ 6; a maximum number of three SCO-slaves can be

supported at the same time in a piconet. In order to achieve

high flexibility of synchronous bandwidth allocation, the

concept of adaptive Tsco [13] is adopted in BBP. Adaptive

Tsco allows a SCO-slave to select a different value of Tsco

from the original one ðTsco ¼ 6Þ and each SCO-slave may

have its own Tsco value. As we will explain in Section 4, the

scheduling algorithm of BBP cannot guarantee isochronous

access for SCO-slaves that match individual Tsco value.

However, we will prove that the offset of the access point for

SCO-slaves is bounded by a small number of slots. That is, a

small upper bound of the access delay for SCO-slaves is

provided in BBP-ext.

Since SCO-slaves should be served periodically regard-

less of the size of the frame (PicoFrameSize), the master has

to calculate and reserve proper slots for SCO-slaves when

the size of the frame is increased (due to the successful

upgrade of a QoS-slave as presented in Section 2.3) in the

bandwidth negotiation process of BBP-bas. As the frame

size is increased, the master checks if the new frame size

crosses the service time slots of a SCO-slave according to

Tsco of the SCO-slave. If so (i.e. the SCO-slave should be

served one more time for the new frame size), PicoFrame-

Size is added by two more slots (reserved for the SCO-slave)

and passed to the next QoS-slave. The idea is shown in

Fig. 5. If the resulted frame size is larger than PicoFrame-

Limit, the master enlarges the value of PicoFrameLimit,

which may result in renegotiation of QoS-slaves in the

following frames.

3.2. Supporting best effort slaves

Since BE-slaves have no bandwidth requirement, the

payload type for a BE-slave can always be DH1 (one slot)

regardless of the size of the frame, PicoFrameSize. There-

fore, as the size of the time is getting longer, the bandwidth

share of a BE-slave is getting smaller. However, if all of the

QoS-slaves are satisfied and there is still some channel

capacity left for BE-slaves, BBP-ext will give each

BE-slave the equal share of the rest of channel capacity.

The master is in charge of the allocation of the rest of

capacity, since it keeps track of the information of each

slave in the piconet.

Fig. 3. PicoFrameLimit vs. FrameLimiti.
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If any of the QoS-slaves is not satisfied with the

bandwidth allocation in a frame, each BE-slave can only

get DH1 in the frame. On the other hand, if all of the QoS-

slaves are satisfied, the master calculates the rest of the

channel capacity that can be allocated to BE-slaves. The

difference between PicoFrameLimit and PicoFrameSize

(i.e. PicoFrameLimit 2 PicoFrameSize) represents the

capacity that can be allocated to BE-slaves. Thus, master

gives each BE-slave the same share of the rest of

the capacity, i.e. (PicoFrameLimit 2 PicoFrameSize)/#

BE-slaves. Note that the resulted payload type for BE-slaves

must properly fit 1-, 3-, and 5-slot boundaries.

3.3. Packet format for BBP

The original packet format (Fig. 6(a)) of Bluetooth needs

to be modified to support operations of BBP. Two 8-bit fields

are added in the packet header (in-band signaling) for

Fig. 4. The algorithm for Master in BBP-bas.

Fig. 5. Reserving slots for SCO-slaves.
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exchanging information between the master and slaves.

Interpretation of the two fields depends on the direction

(uplink or downlink) of the packet as well as the type of

slaves. For packets transmitted from the master to a QoS-

slave, PicoFrameSize and PicoFrameLimit are filled in

the two fields as shown in Fig. 6(b). A QoS-slave returns its

RequestSloti and FrameLimiti in the fields to the master as

shown in Fig. 6(c). No change has been made for SCO packet

format, but the SCO-slave must inform the master of its Tsco

value during link setup phase. As shown in Fig. 6(e), the two

fields of the packets from a BE-slave to the master are both set

to zero to inform the master of the presence of the BE-slave.

On the other hand, the master informs the BE-slave of its

payload type by the first field as shown in Fig. 6(d).

Note that 8-bit PicoFrameLimit (PicoFrameSize) limits

the frame size no more than 255 slots. The reason why it is

appropriate for BBP is explained in the following. As will

be shown in the simulation results (Section 5.2), the

maximum polling time K ¼ 4 is quite enough for flexible

bandwidth allocation in a piconet. The maximum frame size

for K ¼ 4 and 7 active QoS-slaves is (4*5)*2*7 ¼ 280

slots. In order to reduce the overhead introduced by new

fields in a packet as well as make a proper boundary for each

field, 8-bit is chosen.

4. Scheduling algorithm for BBP

At the end of a time frame, the master has already

collected enough information for bandwidth allocation in

the new frame. The information includes (1) PicoFrameSize

and PicoFrameLimit of the new frame, (2) payload type for

each QoS-slave, (3) Tsco value for each SCO-slave, and (4)

payload type for each BE-slave. The scheduling algorithm

in BBP decides the polling order of slaves in the new frame.

The main objective of the scheduling algorithm is to reduce

as much the jitter of the access delay as possible. Therefore,

the scheduling algorithm tries to evenly distribute the polls

for each slave in the frame. The first step of the scheduling

algorithm is to put all QoS-slaves in a round-robin manner.

Second, since SCO-slaves require isochronous access of the

channel, they are inserted in proper slots according to Tsco

value. If the insertion point of a SCO-slave locates in the

middle of a payload type (e.g. DH5), the insertion point

should be shifted to the boundary of the payload type.

Lastly, polls for BE-slaves are appended to the end of the

polling sequence in a round-robin manner. An example of

determining the polling order is shown in Fig. 7. Although a

QoS-slave is polled several times in a frame, information

exchange between the master and slaves for bandwidth

allocation in the next frame only happens in the first poll.

Because of the shift of the polling slot for SCO-slaves,

isochronous service cannot be guaranteed in BBP. However,

there is an upper bound for the shift of SCO-slaves as

explained in the following. First, Tsco must be an even

number of slots, and second, there are two reasons for a

SCO-slave to be shifted: (1) the SCO-slave should be polled

within the payload type of a QoS-slave, and (2) the SCO-

slave is shifted by other SCO-slaves (i.e. the access time

slots of two or more SCO-slaves hit the same slot). The

maximum shift caused by reason (1) is 4 slots, and the

maximum shift caused by reason (2) is ðN 2 1Þ*2; where N

is the number of SCO-slaves in the piconet. Thus, the upper

bound of the shift is 4 þ ðN 2 1Þ*2:

Fig. 6. Packet format for BBP.
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It is worth mentioning that the upper bound of the shift

for SCO-slaves provides a good way for power optimization

by adopting the sniff mode at SCO-slaves [11]. More

specifically, the SCO-slave can set the parameters of sniff

mode as follows to reduce its power consumption: Tsniff ¼

Tsco and Nsniff-attempt ¼ 4 þ ðN 2 1Þ*2:

5. Performance evaluation

5.1. Analysis of the impact of K

We investigate the impact of K on bandwidth allocation

by analyzing two performance criteria: (1) total number of

bandwidth combinations for QoS-slaves, and (2) the longest

time (in the worst case) needed to reach the equilibrium

state for a given K: Total number of bandwidth

combinations for a given K is denoted by NBWðKÞ; and

the worst-case time to reach the equilibrium state is denoted

by TEðKÞ: Apparently, a larger K results in a larger NBWðKÞ

and a larger TEðKÞ: Thus, there is a trade-off between

NBWðKÞ and TEðKÞ in deciding the value of K: We assume

only QoS-slaves are present in the piconet and the

downstream payload from the master to each slave is

always DH1 in the analysis.

In order to calculate NBWðKÞ; we first consider possible

combinations of payload type. We denote the number of

payload combination by NPTðKÞ: Considering the case of

K ¼ 1; there is only three choices for each master-slave

pair: (DH1, DH1), (DH1, DH3), and (DH1, DH5). Thus, the

number of payload combination for K ¼ 1 and S QoS-slaves

(S is the number of active QoS-slaves in the piconet) is

Cð3 þ S 2 1; SÞ;

we define

Cðm; nÞ ¼
m

n

 !
¼

m!

n!ðm 2 nÞ!
;

which is actually the same as the number of ways to place S

non-distinct objects into three distinct cells where a cell can

hold more than one object. For a general K; there are 3K

distinct cells (as shown in Table 2) for S non-distinct

objects. Thus, NPTðKÞ ¼ Cð3K þ S 2 1; SÞ:

Table 2

Pairs of payload for distinct cells

Table 3

NPTðKÞ vs. NBWðKÞ for S ¼ 7

K

1 2 3 4 5 6

NPTðKÞ 36 792 6435 31824 116280 346104

NBWðKÞ 36 784 6426 31703 116158 345304

Fig. 7. E.g. determining the polling sequence.
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Since there are cases that two different combinations of

payload result in the same bandwidth allocation, NBWðKÞ is

not equal to NPTðKÞ: For instance, bandwidth allocation of

QoS-slaves is actually the same for {(1, 5) (1, 5) (1, 5)} and

{(2, 10) (2, 10) (2, 10)} for S ¼ 3: We calculate the exact

number of bandwidth combinations NBWðKÞ by a generator

program. Values of NPTðKÞ and NBWðKÞ for S ¼ 7 are listed

in Table 3, which indicates that NPTðKÞ is pretty close to

NBWðKÞ:

The longest time TEðKÞ for reaching the equilibrium state

is calculated as follows. The initial frame size is 2*S (i.e. 2

slots for each master-slave pair). The longest final frame

size is 6*S*K (i.e. all slaves are served DH5*K in a frame).

The master enlarges PicoFrameLimit if there is a QoS-slave

not satisfied. The worst case happens when there is always

a QoS-slave not satisfied with the current bandwidth

allocation and the master enlarges PicoFrameLimit in

each frame until the longest frame size is reached. Since

the most conservative way to enlarge PicoFrameLimit is to

add 2 slots to PicoFrameLimit in each frame, the total

number of slots before reaching the equilibrium state in the

worst case is:

TEðKÞ ¼
ð6*S*K þ 2*SÞ*

6*S*K 2 2*S

2
2

¼ S2ð9K2 2 1Þ

ðin slotsÞ:

For example, for K ¼ 4 and S ¼ 6;TEðKÞ ¼ 5148

slots ¼ 3.2175 s (1600 slots ¼ 1 s).

Table 4

Some test cases in the simulation

(Kbps) Slave 1 Slave 2 Slave 3 Slave 4 Slave 5 Slave 6 Slave 7 Remarks

Test case 1 50 75 100 125 150 175 N/A 6 QoS

Test case 2 50 75 100 125 150 Tsco ¼ 10 N/A 5 QoS, 1 SCO

Test case 3 32 64 96 128 160 Tsco ¼ 16 Tsco ¼ 24 5 QoS, 2 SCO

Test case 4 80 120 160 200 Tsco ¼ 16 BE N/A 4 QoS, 1 SCO, 1 BE

Test case 5 80 120 160 200 BE BE N/A 4 QoS, 2 BE

Test case 6 32 (0–2 s) 64 (0–2 s) 96 (0–2 s) 128 (0–2 s) 160 (0–2 s) 192 (0–1 s) N/A Slave 6 leaves early

Fig. 8. Bandwidth allocation of each slave for test case 1, K ¼ 1 , 4:
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5.2. Simulation results

Simulation study has been conducted for performance

evaluation of BBP and the scheduling algorithm. A couple

of test cases are used to investigate the performance of BBP

supporting all kinds of slaves. Some test cases are listed in

Table 4. Before going through the figures obtained from the

simulation study, we list some acronyms used in BBP for a

better understanding of the figures:

K : the maximum polling time in a frame for each slave

QoS-slave: a slave with bandwidth requirement (denoted

by BwRq)

SCO-slave: a slave requesting a SCO (synchronous

connection-oriented) link (the value of Tsco should be

provided by the slave)

BE-slave: best-effort slave (no bandwidth requirement,

no SCO link)

Test case 1 in Table 4 is used for investigating the

flexibility of bandwidth allocation under different values of

K: Bandwidth allocation of each slave in test case 1 for

K ¼ 1–4 is shown in Fig. 8(a)–(d). These figures have

shown that a larger K for BBP can achieve more flexibility

in bandwidth allocation at the expense of a longer time

before reaching the equilibrium state.

Test case 2 in Table 4 has demonstrated the presence of a

SCO-slave. Bandwidth allocation of each QoS-slave and the

shift of the polling slots for the SCO-slave (slave 6,

Tsco ¼ 10) in the case are displayed in Fig. 9(a) and (b),

respectively. For this case of only one SCO-slave present in

the piconet, the shift of the polling slot for the slave is

always equal to or smaller than 4 slots as shown in Fig. 9(b).

It is worth mentioning that the oscillation of bandwidth

allocation for each QoS-slave in the equilibrium state in

Fig. 9(a) is caused by the periodic insertion of the SCO-

slave in the polling sequence and the pattern of the

oscillation depends on the value of Tsco of the SCO-slave.

Two SCO-slaves are present in test case 3. Bandwidth

allocation of each QoS-slave is displayed in Fig. 10(a). The

shifts of polling slots of the SCO-slaves (slave 6 and slave 7)

are shown in Fig. 10(b) and (c), respectively, which have

also demonstrated that the maximum shift for two SCO-

slaves present in the piconet is 4 þ (2 2 1)*2 ¼ 6.

Test case 4 and test case 5 demonstrate the presence of

the BE-slave in the piconet. Bandwidth allocation for test

Fig. 9. Bandwidth allocation and shift of the SCO-slave for test case 2, K ¼ 4:
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case 4 is shown in Fig. 11 in which the presence of the SCO-

slave results in the oscillation of bandwidth allocation of the

BE-slave. Bandwidth allocation displayed in Fig. 12 for test

case 5 has demonstrated that the two BE-slaves get equal

share of the rest capacity when the bandwidth requirements

of all QoS-slaves are satisfied. Lastly, test case 6 has

demonstrated the case in which a QoS-slave (slave 6) leaves

earlier and its bandwidth share is then allocated to other

QoS-slaves as displayed in Fig. 13.

5.3. Discussion

Simulation results have demonstrated the flexibility of

multiple times of polling in bandwidth allocation.

Fig. 10. Bandwidth allocation and shift of the SCO-slaves for test case 3, K ¼ 4:
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The scheme of multiple times of polling seems to allow a

greedy QoS-slave to have a large amount of bandwidth by

requesting a large payload type. This case will not cause any

problem as long as all other QoS-slaves still get a proper

amount of bandwidth they have requested. On the other

hand, if any of the other QoS-slaves does not have enough

bandwidth, the bandwidth negotiation process is not

finished. QoS-slaves that do not have enough bandwidth

keep upgrading their payload type to request a larger

amount of bandwidth in order to meet their requirements. As

a consequence, the largest payload type (DH5*K) is

assigned to all of the QoS-slaves and it results in equal

share of the channel capacity for all QoS-slaves, which

demonstrates the fairness of bandwidth allocation in BBP.

Moreover, there are cases that a malicious slave does not

follow the rules of BBP and transmits packets of a larger

payload type than it has been assigned. Once the case is

detected, the master reduces the polling frequency of the

malicious slave. The master either polls the slave fewer

times than the slave has requested in a frame or polls the

slave once in more than one frame as the penalty.

The scheme of BBP and associated scheduling algorithm

only consider the QoS requirement (bandwidth or SCO) of

the uplink data flows from slaves to the master. We assume

the payload type of the downlink data flows from the master

to each slave is always DH1 in BBP. To consider the

bandwidth requirement of downlink data flows, the master

needs to maintain the bandwidth requirement to each slave

and calculate a proper payload type according to the

bandwidth requirement as well as the value of PicoFrame-

Limit. In the beginning of a frame, the master reserves

enough slots for downlink flows by adding the number of

slots to the value of PicoFrameSize, which is then passed to

each slave. Moreover, the scheduling algorithm also needs

to be modified to consider the payload types of both

downlink and uplink data flows. The future work of the

paper is to extend BBP scheme to support QoS for downlink

data flows and propose a proper scheduling algorithm

considering both downlink and uplink QoS requirements.

6. Conclusion

In this paper, a flexible bandwidth allocation scheme

namely BBP has been proposed for supporting QoS in

Bluetooth. BBP defines a framing structure of time and

allows a slave to be polled multiple times in a frame to

improve pure round robin scheme for high flexibility of

bandwidth allocation. Calculation of the payload type and

the polling time in a frame for a slave (QoS-slave) is

according to its bandwidth requirement and the limit of the

frame size controlled by the master. The master and slaves

supporting BBP need to cooperate and exchange necessary

information in the bandwidth negotiation process, and two

new fields are added in the packet format of Bluetooth. The

master either enlarges or shrinks the limit of the frame size

for proper control of bandwidth allocation. Extension

version of BBP has also been proposed to support slaves

with the SCO link (SCO-slaves) and slaves with no

requirement (best-effort slaves).

Adaptive Tsco has been adopted in the paper, in which

SCO-slaves can select different values of Tsco: The schedul-

ing algorithm of BBP provides a small upper bound of access

delay for SCO-slaves, and thus the sniff mode can be applied

to reduce power consumption. Simulation results have

Fig. 11. Bandwidth allocation of the slaves for test case 4, K ¼ 4:

Fig. 12. Bandwidth allocation of the slaves for test case 5, K ¼ 4:

Fig. 13. Bandwidth allocation of the slaves for test case 6, K ¼ 4:
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demonstrated the efficiency and fairness of BBP in

bandwidth allocation. Flexibility of bandwidth allocation

depends on the maximum polling time ðKÞ predefined by

BBP. A larger K makes higher flexibility of bandwidth

allocation. Nevertheless, a larger K also results in a longer

latency before reaching the equilibrium state.

It is worth mentioning that BBP proposed in this paper

adopts a distributed manner for bandwidth management, in

which the information for bandwidth allocation is piggy-

backed in data packets to and fro between the master and

slaves. The concept of BBP can also be implemented in a

centralized manner, in which the master collects bandwidth

requirements of all slaves and calculates the best payload

type for each slave in a frame. The master then notifies each

slave of its payload type in the next frame. The centralized

version of BBP does not introduce as much the latency of

reaching the equilibrium state. However, the centralized

version requires more computation power at the master than

the distributed version.

References

[1] P. Bhagwat, Bluetooth: technology for short-range wireless apps,

IEEE Internet Computing 5 (2001) 96–103.

[2] P. Johansson, M. Kazantzidis, R. Kapoor, M. Gerla, Bluetooth: an

enabler for personal area networking, IEEE Network 15 (2001)

28–37.

[3] B. Chatschik, An overview of the Bluetooth wireless technology,

IEEE Communications Magazine 39 (2001) 86–94.

[4] Bluetooth SIG, Specification of the Bluetooth System v1.0 B,

Specification, vol. 1 and 2, December 1st 1999.

[5] The Bluetooth Web Site, http://www.bluetooth.com.

[6] A. Capone, M. Gerla, R. Kapoor, Efficient polling schemes for

Bluetooth picocells, Proceedings of the IEEE ICC, 2001, pp. 1990–

1994.

[7] A. Das, A. Ghose, A. Razdan, H. Saran, R. Shorey, Enhancing

performance of asynchronous data traffic over the Bluetooth wireless

ad-hoc network, Proceedings of the IEEE INFOCOM, 2001,

pp. 591–600.

[8] R. Bruno, M. Conti, E. Gregori, Wireless access to Internet via

Bluetooth: performance evaluation of the EDC scheduling algorithm,

Proceedings of the ACM First Workshop on Wireless Mobile Internet,

2001, pp. 43–49.

[9] V. Sangvornvetphan, T. Erke, Traffic scheduling in bluetooth

network, Proceedings of the Ninth IEEE International Conference

on Networks, 2001, pp. 355–359.

[10] M. Kalia, D. Bansal, R. Shorey, Data scheduling and SAR for

Bluetooth MAC, Proceedings of the IEEE VTC Spring (2000)

716–720.

[11] S. Grag, M. Kalia, R. Shorey, MAC scheduling policies for power

optimization in Bluetooth: a master driven TDD wireless system,

Proceedings of the IEEE VTC Spring (2000) 196–200.

[12] M. Kalia, D. Bansal, R. Shorey, MAC scheduling and SAR policies

for Bluetooth: a master driven TDD pico-cellular wireless system,

Proceedings of the IEEE Monuc’99, pp. 384–388.

[13] S. Chawla, H. Saran, M. Singh, QoS based scheduling for

incorporating variable rate coded voice in Bluetooth, Proceedings

of the IEEE International Conference on Communications (ICC

2001), 2001, pp. 1232–1237.

[14] I. Chakraborty, A. Kashyap, A. Kumar, A. Rastogi, H. Saran, R.

Shorey, MAC scheduling policies with reduced power consumption

and bounded packet delays for centrally controlled TDD wireless

networks, Proceedings of the IEEE International Conference on

Communications (ICC 2001), 2001, pp. 1980–1984.

[15] O. Sharon, E. Altman, An efficient polling MAC for wireless LANs,

IEEE/ACM transactions on networking 9 (2001) 439–451.

[16] O. Kubbar, H.T. Mouftah, Broadband wireless networks: an

investigation into the on-demand TDMA MAC protocol and the

connection reestablishment performance guarantee, Proceedings of

the IEEE International Conference on Communications (ICC 2001),

2001, pp. 1797–1801.

[17] O. Kubbar, H.T. Mouftah, Broadband wireless networks: an

investigation into the traffic behavior control, and QoS guarantees,

Proceedings of the IEEE International Conference on Communi-

cations (ICC 2000), 2000, pp. 985–989.

[18] R.S. Ranasinghe, L.L.H. Andrew, D.A. Hayes, D. Everitt, Scheduling

disciplines for multimedia WLANs: embedded round robin and

wireless dual queue, Proceedings of the IEEE International Con-

ference on Communications (ICC 2001), 2001, pp. 1243–1248.

[19] M. Veeraraghvan, N. Cocker, T. Moors, Support of voice services in

IEEE802.11 wireless LANs, Proceedings of the IEEE INFOCOM

2001, 2001, pp. 488–497.

C.-C. Yang, C.-F. Liu / Computer Communications 27 (2004) 1236–1247 1247

http://www.bluetooth.com

	A bandwidth-based polling scheme for QoS support in Bluetooth
	Introduction
	Basic version of bandwidth-based polling (BBP-bas)
	Basic idea and slot allocation for QoS-slaves
	QoS-slave’s action in BBP-bas
	Master’s action in BBP-bas

	Supporting SCO-slaves and BE-slaves in BBP (BBP-ext)
	Supporting SCO-slaves
	Supporting best effort slaves
	Packet format for BBP

	Scheduling algorithm for BBP
	Performance evaluation
	Analysis of the impact of &f;K&/f;
	Simulation results
	Discussion

	Conclusion
	References


