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Abstract– Harnessing the time varying topological aspect
of mobile ad hoc networks so as to support Quality of Ser-
vice (QoS) measures is a challenging problem. In this pa-
per we develop and investigate the use of a simple spatial
probabilistic locality model to enhance the performance of
current on-demand routing algorithms. To explore the ap-
plicability of our approach, we examine two basic routing
problems. The first problem calls for evaluating the likeli-
hood that a given source-destination route exists, given that
each mobile host on the route can be in any position of its
locality set. The second problem calls for choosing the most
probable route between a given source-destination pair that
avoids traffic bottlenecks. In each case, we formalize a suit-
able problem, and devise an efficient solution strategy.

I. INTRODUCTION

Recent progress in mobile wireless networking has initi-
ated intensive research towards seamless integration between
mobile users and the Internet. Mobility, however, poses a
great challenge in the architecture of both mobile cellular and
mobile ad hoc networks. Relatively speaking, however, the
situation for mobile cellular networks is conceptually sim-
pler than the situation for mobile ad hoc networks: in a cel-
lular network a mobile host reaches a base station either di-
rectly, or perhaps through an intermediate mobile foreign
agent; moreover, the base stations can predict the location
of the host. In contrast, in a wireless ad hoc network, mo-
bile hosts move freely with no supporting network backbone.
Presently, much progress on mobility prediction in cellular
networks has been achieved. The prediction algorithms may
take into account such detailed parameters as the past loca-
tions of the user, his speed, directionality, and pausing times.
The availability of such detailed models has provided support
for developing recent proposals on signaling and reservation
protocols that can accommodate various classes of services
in cellular networks (see, for example, [1], [12], [15], [16],
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and [17]). In contrast, in ad hoc networking it is not clear
what level of detail a useful mobility model might have, how
to estimate the parameters of the model, and how to fruit-
fully apply such information to enhance the performance of
current sophisticated routing algorithms. In this regard, the
current literature on mobility modeling for cellular networks
offers a little reuse.

In this paper, we approach the mobility modeling prob-
lem by adopting a simple and intuitive behavioural model
whereby each user moves among a number of geographic lo-
cations (e.g., a residence, a workplace, a playground, etc.)
spending some time (with a known probability) in each lo-
cation before moving to another location. The collection of
such locations form the user’s locality set. That is, we con-
sider environments where the users exhibit a probabilistically
predictable spatial behavior. In doing so, we deviate from us-
ing purely random high mobility (zero pause) models that are
commonly used in creating stressful test environments. Our
goal is to investigate the opportunities offered by such a sim-
ple model to enhance the performance of existing dynamic
routing algorithms. At this preliminary stage, however, the
emphasis is on identifying problems that appear most useful
to tackle, and on devising possible solutions. To achieve this
goal, a number of practical considerations that arise is es-
timating the model parameters, and how the parameters are
exchanged between the mobile users are not fully addressed.

Our main contributions are two algorithms: function
evalRoute() computes the likelihood that a given end-
to-end path exists (cf. Section 3), and function selec-
tRoute() computes an approximate solution to an opti-
mization problem that calls for selecting a most probable
route that balances the nodal loads (cf. Section 4). We now
discuss possible opportunities for using our findings as op-
tional optimization steps in existing dynamic routing proto-
cols. In particular, we consider the class of on-demand rout-
ing algorithms [4, 9, 10, 13, 14, 19] that has been shown to be
effective in ad hoc networks. Of the proposed routing algo-
rithms in this class, Dynamic Source Routing (DSR) [9], and
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Ad-hoc On-Demand Distance Vector Routing (AODV) [14]
have received particular attention, and subjected to detailed
comparative analysis [6, 11]. To make our points concrete,
we reproduce (and establish close ties with) some of the im-
portant findings of the recent comparative study of [6].

Firstly, we note that a key feature in the strength of dy-
namic routing protocols is their ability to limit the flooding
process inherent in path discovery when a route reconstruc-
tion is required. DSR, for example, stores the routes it has
“learned” in a route cache, where more than one route for
each destination can be stored. If an intermediate node on a
route detects a broken connection to the next-hop, it searches
its cache for an alternate route. The detailed simulation study
of [6] shows that DSR has a low normalized routing load (de-
fined as the ratio of the routing packets transmitted per data
packet delivered at the destination). The study attributes this
feature to the high hit ratio to DSR’s routing cache, which
results in lower use of the route discovery process.

The above finding suggests that using route cache in dy-
namic routing is a clear value proposition that can be en-
hanced further by “smart” management of the cache’s con-
tent. In an environment where spatial locality can be es-
timated probabilistically, one can hope of extracting infor-
mation that allow the ranking of routes in the cache accord-
ing to their existence likelihood. In our work, this ranking
capability can be provided using function evalRoute().
Additionally, if the cache is empty for a particular source-
destination request, one may resort to generating new routes
that have plausible success probability, and add them to the
cache. This latter aspect is addressed along with the next
point.

Secondly, it has been long believed that the performance
of ad hoc networks routing protocols is enhanced with re-
duced nodal mobility. Nevertheless, the detailed simulation
studies of [6], and [8] have shown that, to the contrary, the
end-to-end delays for both DSR and AODV increases with
very low mobility. In [6], this rather unexpected behaviour
has been attributed to a high level of network congestion and
multiple access interferences at certain regions of the ad hoc
network, combined with the fact that neither protocol has any
mechanism for load balancing (i.e., choosing routes in such
a way that the data traffic can be more evenly distributed in
the network). The phenomenon is less visible with higher
mobility.

We remark that both findings suggest that it is worth-
while considering optimization problems that call for gen-
erating routes that have plausible success probability, and
(simultaneously) have the potential of avoiding bottlenecks,
and achieving a reasonable balance between mobile loads.
Our work supports this feature through function selec-
tRoute().

The rest of the paper is organized as follows. Section 2
gives a formal account of the probabilistic locality model.

Section 3 discusses the complexity of evaluating the likeli-
hood that a given end-to-end path exists, and introduces func-
tion evalRoute(). Section 4 formalizes a multi-criteria
optimization problem that calls for selecting a most probable
route that balances the nodal loads, and describes function
selectRoute(). Finally, Section 5 draws some conclu-
sions.

II. THE NODAL LOCALITY MODEL

We start by drawing some remarks on the existing litera-
ture. First, a commonly used model to study random graphs
starts with a fixed set of n nodes, and then assumes that edges
are chosen randomly, and independently from each other,
with some known probability (see, for example, [2]). This
model has been used in the early work on wireless networks.
However, it falls short of capturing the dependency between
links when a mobile host moves around. Modifying the con-
ventional random graph model to account for joint probabili-
ties offers no use of the existing results. In addition, the mod-
ified model is less intuitive, with parameters that are hard to
estimate.

Second, in a remarkable paper by [5], some basic results
of Kolmogrov complexity, in conjunction with results from
random graphs, have been used to show a probabilistic guar-
antee on the convergence of a distributed algorithm for build-
ing a backbone in a mobile network. The technique circum-
vents the link dependency problem of conventional random
graph techniques, however, is not suitable to achieve our
goals.
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Fig. 1 An illustration of the probabilistic locality model.

Here, we adopt a simple model in which any arbitrary
host x moves around between a set fx[1]; x[2]; � � � ; x[`]g
of geographic locations (` may differ from one host to an-
other), pausing at each location for some arbitrary interval
of time. We call such a set the locality set of x, and de-
note it P os(x). Figure 1 is used as a running example, where
jPos(v)j = jPos(x)j = jPos(y)j = 3, and jPos(w)j = 2.
In this preliminary work, we don’t assume knowledge of any
pausing time distribution. We assume, however, that one can
estimate the probability px[i] that host x is at location x[i]
(a cooperating host may choose to announce its expected
spatial behaviour over a certain period of time). That is,
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P
x[i]2Pos(x) px[i] � 1 (the ’�’ accounts for partial knowl-

edge of the host positions).
The connectivity relation is denoted L, and is defined as

follows. If mobile x[i] can reach mobile y[j] directly, then
L contains the (unordered pair) (x[i]; y[j]). Equivalently,
we write L(x[i]; y[j]) = 1 (or, 0 otherwise). If we denote
the set of all hosts by B, and let P os(B) =

S
x2B P os(x),

p(B) =
S
x2B fpx[1]; px[2]; � � �g then the ad hoc network

can be represented by the sequence (B;Pos(B); p(B); L).

III. ROUTE RANKING

We now address the first problem: at some point the mo-
bile station discovers that the current route is no longer valid,
and tries to find an alternate route while avoiding executing
a path discovery phase. In this section we show that if the
mobile has some older routes, it can rank them according to
their likelihood. In the next section, we show how the model
can be utilized to proactively generate optimized routes for
the mobile host to try before flooding. In its simplest form,
the problem can be stated as follows.

[P1] Given a source mobile s, and a destination mobile d at
specific locations, and an (s; d)-route (a simple path) R,
compute Prob [R].

Two remarks are now in order. Firstly, the exact computation
of Prob [R] depends not only on R, but also on the way the
communication protocol handles overheard packets (that is,
packets not intended to the node) at each of the receiving
nodes on R. To illustrate, consider for example, the (s; d)-
route R = (s; v; w; x; y; d) of Figure 2.a, where the dashed
lines correspond to connections that give rise to overhearing
over the route R.
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Fig. 2 (a) overhearing packets on a route
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Fig. 2 (b) a (v; y)-route with source and
destination location uncertainties

In dealing with overheard packets, one may distinguish two
extreme possibilities: either the overheard packets at each

mobile node are dropped, or else, utilized to form more effi-
cient routes. Exploiting overheard packets in the latter way is
used, for example, in the promiscuous listening optimization
feature of the DSR protocol. In our preliminary investigation
presented below, we adopt the viewpoint that the communi-
cation protocol indeed exploits such route refinement possi-
bilities so that the routes stored in the cache result in negligi-
ble overhearing. When applied to Figure 2.a, the assumption
implies that non of the dashed lines exists in R, if R is a route
stored in the cache at the connection breaking time.

As a second remark, the route evaluation process may
be invoked at a time when the source and/or the desti-
nation are either engaged in (or anticipate) moving fre-
quently between a certain subset of their respective lo-
cality sets. Figure 2.b illustrates a (v; y)-route R =
(v[1; 2; 3]; w[1; 2]; x[1; 2; 3]; y[1; 2; 3]), where for example,
the source node v anticipates moving between 3 posi-
tions. The sought evaluation process should consider such
source/destination uncertainties along with similar uncertain-
ties for the intermediate nodes. Considering the above new
aspect leads to the following refined problem formulation:

[P2] As in [P1], except that each of s and d can be in any one
position of a prescribed locality set Loc(s) � P os(s),
and Loc(d) � P os(d).

We now devise a solution to [P2] that scales down to solve
[P1] without a significant loss of efficiency. For each mobile
x in R, let Loc(x) denote a subset of P os(x) that best repre-
sent the possible locations of x that contribute to computing
Prob [R]. With each x 2 R, we associate an aggregate prob-
ability vector cx = (cx[i] : 1 � i � jLoc(x)j). Roughly
speaking, cx[i] is the probability that mobile x reaches the
destination d, given that x is at the ith indexed position x[i]
of its locality set Loc(x). Function evalRoute() below
traverses the route in reverse order (i.e., from the destination
to the source) while computing the aggregate probabilities,
and finally returns the required value of Prob [R].

To illustrate the algorithm, we use the (v,y)-route of Fig-
ure 2.b. The resulting aggregate vectors after step 1 (the ini-
tialization), and step 2.3 (removing a node), are shown below.
The returned value Prob [R] = 0:092.

initialization
cv = [0; 0; 0]
cw = [0; 0]
cx = [0; 0; 0]
cy = [1; 1; 1]

removing y
cv = [0; 0; 0]
cw = [0; 0]
cx = [0:4; 0:2; 0:8]

removing x
cv = [0; 0; 0]
cw = [0:34; 0:08]

removing w
cv = [0:17; 0:04; 0:21]
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function evalRoute (R;Loc)
#input: an (s; d)-route R, and a local-

ity set Loc(x) for each mobile
x 2 R

#output: Prob [R]
1. for each mobile x 2 R, and possible

location index i, set:

cx[i] =

(
1 if x is the destination

node
0 otherwise

2. while (R has at least two nodes) f

2.1 Let y be the mobile farthest

from s on R, and let x be

y’s unique neighbor on R

# compute cx as follows:

2.2 for (x[i] in Loc(x))

cx[i] =
P

y[j]2Loc(y)
py[j] cy[j] L(x[i]; y[j]);

2.3 remove y from R;

g

3. return
�P

s[i]2Loc(s)
ps[i] cs[i]

�
;

To prove correctness, one may verify that at the end of
each iteration, if x 2 R, and x[i] 2 Loc(x) then the path
segments accounted for in cx[i] are: (a) topologically dis-
tinct, (b) correspond to statistically independent set of events,
and (c) exhaustive.

We conclude this section by mentioning a limiting result
(while omitting the proof to conserve space): as we general-
ize the role of the above algorithm from assessing the likeli-
hood of a simple route to assessing the likelihood of an arbi-
trary chosen backbone subnetwork, the complexity of the al-
gorithm increases dramatically. A simple NP-completeness
reduction can be devised to show that computing Prob [R]
is NP-complete, if we consider a backbone subnetwork R

where each two mobile nodes are connected, and each node
has a 3-position locality set.

IV. A LOAD BALANCING ALGORITHM

As mentioned in Section 1, part of the critical findings
in [6] motivates the development of routing algorithms that
avoid traffic bottlenecks, specially in very low mobility en-
vironments. As of the present time, we are not aware of a
research work that is devoted to routing with load balancing
on ad hoc networks. In this section, we pursue this direction
further, in the context of using a probabilistic locality model,
and taking into account the heterogeneous nature of the mo-
bile hosts with respect to their computational and commu-
nication resources. Our approach is based on developing an
optimization framework in search of routes that can be used
in an advisory manner for a higher-level layer of the routing
protocol. Section 4.1 introduces the key optimization param-
eters of concern and formalizes the problem, and Section 4.2
discusses a solution strategy.

A. An Optimization Framework
We consider a simple 2-parameter framework where: (a)

each host x monitors its current traffic load, denoted u(x),
measured by the number of packets received and transmitted
per second (for simplicity, many recent simulation studies
assume fixed-length packets of 64-byte each), and (b) each
host sets the maximum acceptable traffic rate it can handle,
denoted umax(x). Additionally, we assume that the mobile
hosts exchange such information, so that each host has an ap-
proximate knowledge of the current load, and the maximum
acceptable rate of other relevant hosts in the network.

With the above parameters, several route optimization
problems can be formalized. Of the existing possibili-
ties, we formalize the following problem. First, given an
(s; d)-route (a simple path) R, define the critical utiliza-
tion ratio of R, denoted urcritical(R) as maxx2R(

u(x)
umax(x)).

That is, the hosts associated with the critical ratio are
the most loaded hosts on the route R. Our problem
calls for selecting the most probable (s; d)-route R that
has the lowest possible critical utilization ratio. That
is, our routing algorithm favours a route R satisfying:

[P3] maximize Prob [R]
subject to
urcritical(R) =
min

R0 is an (s;d)�route (urcritical(R
0)) :

We now draw some remarks about the above parameters.
Firstly, compared to other QoS measures (e.g., packet deliv-
ery fraction, average end-to-end delay, and normalized rout-
ing load), the traffic load is conceptually easier to assess by
a mobile node. Nevertheless, due to the broadcast nature of
the MAC protocol, the traffic load u(x) is affected by routes
passing by the node’s itself, as well as its one-hop neigh-
bours. Such unpredictable interference suggests the use of a
sampling technique and a prediction method to approximate
the traffic load of a mobile host at any time. For instance, one
may use the exponential-weighted moving average method,
commonly used in measurement-based call admission con-
trol schemes (see, for example, [3] and [7]) to approximate
the host’s traffic load.

Secondly, we remark that while it is obvious that u(x)
should never exceed umax(x), the existing routing algo-
rithms cannot guarantee this; the advisory routes obtained
by our devised algorithm tries to relieve the problem. Fur-
thermore, by lowering the maximum acceptable traffic load,
each mobile host can accommodate temporary overload con-
ditions, and low battery power conditions.

Thirdly, we remark that while accounting for the inter-
ferences between neighbours is done implicitly in reality, as
well as in detailed simulation experiments; other simulation
models that abstract away from the MAC layer can still ap-
proximate such interferences by incorporating simple update
operations. For example, if x’s current load is u(x), then a
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new end-to-end connection R affects u(x) as follows: if x is
either the source, or the destination, of R then x’s new load
is u(x) + 1; else if x is an intermediate node on R, then its
new load is u(x) + 2; moreover, each connection carried by
each neighbor of x adds 1 unit to u(x).

B. The Algorithm
Evidently, a solution strategy based on generating and ex-

amining all possible (s; d)-routes falls short of being efficient
even for networks of relatively small sizes (e.g., 20 hosts). A
better strategy, that is central to our discussion, proceeds as
follows:

� First, sort the utilization ratio vector ( u(x)
umax (x) : x 2 B)

is ascending order (i.e., from the least loaded to the most
loaded hosts), and compact the vector by removing du-
plicate numerical entries. Call the resulting sorted se-
quence ursorted, and denote its length by jursortedj.

� Second, for each numerical value urcheck in ursorted
(taken in order, from the lowest to the highest),
form a subnetwork N 0 that includes only the mobiles
fx : u(x)

umax (x) � urcheckg. Subsequently, for each sub-
network N 0, find the most probable (s; d)-route R,
if one exists. Exit upon finding the first R with
Prob [R] > 0 (R is the required solution). Otherwise
(i.e., if no such R exists), then d is not reachable from s

in the original network.

The above search algorithm finds a solution to the 2-criteria
optimization problem in time proportional to the product of
the length jursortedj, and the time required to find the most
probable path between mobiles s and d. Unfortunately, we
don’t know of any polynomial time solution to solve the latter
problem. To cope with the apparent intractability of finding
the most probable (s; d) simple path, we propose a weaker
notion of route probability that is amenable to algorithmic
solution. For this purpose,

[D1] define an (s; d)-strand between a source s and a des-
tination d to be a routing path where each mobile host
is at some specific location of its locality set. For exam-
ple, (v[1]; w[1]; x[3]; y[3]) corresponds a strand along
the route (v; w; x; y) of Figure 2.b.

Clearly, if R0 is any strand of a route R then Prob [R 0] �
Prob [R], and hence a high Prob [R0] can be taken as rough
indicator of a high Prob [R]. Consequently, if finding the
most probable (s; d)-strand can be solved efficiently, then a
first approximation attempt is to use the (s; d)-route associ-
ated with the most probable (s; d)-strand. Indeed the fol-
lowing theorem shows that the existing rich body of shortest
distance algorithms (end-to-end, and all-pairs) can be used to
solve the most probable strand problem. As implied by the
proof given below, the shortest distance algorithm runs on a

graph that is moderately larger than the original ad hoc net-
work. In particular, if we let B 0 =

S
x2B Pos(x) to be the

set of all positions of all mobiles in the ad hoc network, then
the shortest path algorithm runs on a graph with 2jB 0j nodes,
and jB0j+ 2jLj links.

Theorem 1. Finding the most most probable strand can be
done in polynomial time.
Proof.
Given a probabilistic locality model (B;P os(B); p(B); L),
and two mobiles s and d, we construct a directed graph G

as follows. Each mobile position x[i] 2 P os(x) is associ-
ated with two nodes of G: xin[i], and xout[i] connected by
an arc (xin; xout) of distance� log(px[i]). Moreover, for ev-
ery possible link (x[i]; y[j]) 2 L of the ad hoc network, add
two arcs (xout[i]; yin[j]) and (yout[j]; xin[i]), each of zero
distance, to the directed graph G.

One may then verify that for any two mobiles x and y

in B: (i) if R0 is a (x[i]; y[j])-stand in the ad hoc net-
work, then it is associated with a directed (xin[i]; yout[j])-
path in G, and (ii) if R0 exists with probability Prob [R0],
then the corresponding directed path in G has distance
�
P

px[i]2R0 log(x[i]) = � log (Prob [R0]). This completes
the proof.

function selectRoute (ADHOC; s; d)
#input: a probabilistic locality model

ADHOC of an ad hoc network,
and two mobiles s and d

#output: a route that approximates a
solution to problem [P3]

1. initialize: (R;Prob [R]) = (�; 0);

2. construct the sorted list ursorted,

as outlined above

3. foreach (ucheck 2 ursorted in

ascending order) f

3.1 ignore the mobiles x with
u(x)

umax(x)
> ucheeck;

3.2 foreach((s[i]; d[j]) 2 Loc(s)� Loc(d))f

3.2.1 find the most probable

(s[i]; d[j])-strand; denote

its associated route by R;

3.2.2 call evalRoute(R)

3.2.3 keep the route with the

highest probability

g

3.3 if (R 6= �) break;

g

4. return (R);

We now consider an avenue for enhancing to the above
route selection algorithm. The strategy is to generate a num-
ber of (s; d)-strands, and examine their associated (s; d)-
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routes to select the best route. More specifically, we consider
the set Pos(s)�P os(d) of all possible positions that s and d
can take. For each possible pair of positions, say s[i] and d[j],
we compute the most probable (s[i]; d[j])-strand; the corre-
sponding route R becomes a candidate route for selection.
We now use function evalRoute() to compute Prob [R]
for each candidate route. Function selectRoute() be-
low outlines our proposed solution for problem [P3]. This
concludes the route selection algorithm.

V. CONCLUDING REMARKS

Our main focus in the paper has been on investigating ba-
sic algorithmic issues that arise in exploiting user behaviour
to support QoS routing in ad hoc networks. We note that
the field of assessing the behaviour of mobile users has only
recently started to receive attention (see, e.g., [18]).

To this end, we formalized a simple probabilistic model
that captures the user’s spatial behaviour, and used the
model to develop two efficient algorithms: function eval-
Route() estimates the likelihood the all segments of a
multi-hop route coexist simultaneously, and function se-
lectRoute() selects a highly probable route that avoids
traffic bottlenecks. The resulting algorithms can be used as
optimization features that may be used by a host protocol.
Simulation studies are currently underway to assess the im-
pact of using the locality model, and the devised algorithms
on some on-demand routing algorithms.
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